Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149432996> ?p ?o ?g. }
- W2149432996 endingPage "119" @default.
- W2149432996 startingPage "100" @default.
- W2149432996 abstract "The coexistence of Venusian highlands, attributed to long-lived axisymmetric mantle plumes, and uncompensated coronae, attributed to transient discrete mantle ‘thermals’, is difficult to reconcile with models of mantle convection under thermally steady-state conditions. However, cratering and geological studies indicate a uniformly young surface age (∼ 700 Myr) as well as a comparable timescale for resurfacing (∼ 100 to 400 Myr), possibly consistent with a recent lithospheric overturn and a transient mantle thermal regime. We use laboratory experiments on free and forced thermal convection at high Rayleigh number (Ra ∼ 107) in a variable viscosity fluid to investigate the steady-state and transient thermal regimes preceding and following such an overturn. From analyses of shadowgraph images and time series of global and local variations in temperature, basal heat flux and viscosity, we establish steady-state stagnant- and active-lid states and characterize two intermediate transient regimes. Flow in steady-state stagnant lid is in the form of intermittent thermals, consistent with published work. During the transition to active-lid convection the stagnant lid is stirred into the interior using a conveyor belt. Spreading of this cold fluid along the hot boundary leads to a transition to a “mixed mode” of flow from the hot boundary: approximately isoviscous thermals rise from the thermal boundary layer ahead of the advancing cold front and low viscosity plumes rise from behind the front, as a result of an enhanced temperature contrast. The longevity of this regime and the timescale for the transient depends on the rate of overturn (Pe) and the aspect ratio of the system (A). The magnitude of local temperature, viscosity and heat flux variations increases with Pe and can exceed steady-state values for active-lid convection. Additional numerical simulations show that the mixed mode regime will occur in the presence of internal heating, and for no- and free-slip boundaries. In contrast, the transition from active-lid to stagnant-lid convection is marked by a change from a flow composed of plumes and large-scale overturning motions to a regime dominated by rising and sinking thermals on a timescale of thermal diffusion. Applied to Venus, our results support a hypothesis that the contemporaneous coexistence of the Atla and Beta highlands regions with interspersed uncompensated coronae is consistent with a transient thermal regime following a lithospheric overturn. It is also expected that such coronae formed > 250 Myr after the uplift of the highlands. Implications of the thermal origin of coronae for Venusian mantle structure are also explored." @default.
- W2149432996 created "2016-06-24" @default.
- W2149432996 creator A5004872641 @default.
- W2149432996 creator A5013813541 @default.
- W2149432996 creator A5021586251 @default.
- W2149432996 creator A5028148570 @default.
- W2149432996 date "2007-04-15" @default.
- W2149432996 modified "2023-09-27" @default.
- W2149432996 title "Transient mantle convection on Venus: The paradoxical coexistence of highlands and coronae in the BAT region" @default.
- W2149432996 cites W1522212896 @default.
- W2149432996 cites W1594412726 @default.
- W2149432996 cites W1623782396 @default.
- W2149432996 cites W1881271118 @default.
- W2149432996 cites W1949349751 @default.
- W2149432996 cites W1966917681 @default.
- W2149432996 cites W1967598321 @default.
- W2149432996 cites W1968409605 @default.
- W2149432996 cites W1972332798 @default.
- W2149432996 cites W1975988472 @default.
- W2149432996 cites W1976393854 @default.
- W2149432996 cites W1982225515 @default.
- W2149432996 cites W1992656731 @default.
- W2149432996 cites W1998611090 @default.
- W2149432996 cites W1999741397 @default.
- W2149432996 cites W2004412774 @default.
- W2149432996 cites W2009659415 @default.
- W2149432996 cites W2010258987 @default.
- W2149432996 cites W2010684938 @default.
- W2149432996 cites W2014218540 @default.
- W2149432996 cites W2016973289 @default.
- W2149432996 cites W2017445379 @default.
- W2149432996 cites W2019827002 @default.
- W2149432996 cites W2027791091 @default.
- W2149432996 cites W2029248941 @default.
- W2149432996 cites W2029570023 @default.
- W2149432996 cites W2031236067 @default.
- W2149432996 cites W2032201850 @default.
- W2149432996 cites W2032571107 @default.
- W2149432996 cites W2036131542 @default.
- W2149432996 cites W2040907442 @default.
- W2149432996 cites W2043212200 @default.
- W2149432996 cites W2043442365 @default.
- W2149432996 cites W2044493092 @default.
- W2149432996 cites W2044812197 @default.
- W2149432996 cites W2047331327 @default.
- W2149432996 cites W2053168084 @default.
- W2149432996 cites W2056884602 @default.
- W2149432996 cites W2058926689 @default.
- W2149432996 cites W2060573651 @default.
- W2149432996 cites W2069582569 @default.
- W2149432996 cites W2075891790 @default.
- W2149432996 cites W2076307294 @default.
- W2149432996 cites W2077395178 @default.
- W2149432996 cites W2078417878 @default.
- W2149432996 cites W2079260131 @default.
- W2149432996 cites W2080630740 @default.
- W2149432996 cites W2082163844 @default.
- W2149432996 cites W2094034195 @default.
- W2149432996 cites W2094034621 @default.
- W2149432996 cites W2095451849 @default.
- W2149432996 cites W2102964551 @default.
- W2149432996 cites W2103672943 @default.
- W2149432996 cites W2105501186 @default.
- W2149432996 cites W2113016068 @default.
- W2149432996 cites W2113567600 @default.
- W2149432996 cites W2129769146 @default.
- W2149432996 cites W2135235571 @default.
- W2149432996 cites W2135464766 @default.
- W2149432996 cites W2136391139 @default.
- W2149432996 cites W2138206872 @default.
- W2149432996 cites W2139158304 @default.
- W2149432996 cites W2139696405 @default.
- W2149432996 cites W2140545320 @default.
- W2149432996 cites W2146535399 @default.
- W2149432996 cites W2151603927 @default.
- W2149432996 cites W2154573870 @default.
- W2149432996 cites W2155525377 @default.
- W2149432996 cites W2156405862 @default.
- W2149432996 cites W2164205280 @default.
- W2149432996 cites W2164953320 @default.
- W2149432996 cites W2165924779 @default.
- W2149432996 cites W2171212919 @default.
- W2149432996 cites W3009134242 @default.
- W2149432996 cites W3105696535 @default.
- W2149432996 cites W3123186417 @default.
- W2149432996 cites W67953073 @default.
- W2149432996 doi "https://doi.org/10.1016/j.epsl.2007.01.016" @default.
- W2149432996 hasPublicationYear "2007" @default.
- W2149432996 type Work @default.
- W2149432996 sameAs 2149432996 @default.
- W2149432996 citedByCount "21" @default.
- W2149432996 countsByYear W21494329962012 @default.
- W2149432996 countsByYear W21494329962013 @default.
- W2149432996 countsByYear W21494329962014 @default.
- W2149432996 countsByYear W21494329962016 @default.
- W2149432996 countsByYear W21494329962017 @default.
- W2149432996 countsByYear W21494329962018 @default.
- W2149432996 countsByYear W21494329962019 @default.