Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149451018> ?p ?o ?g. }
- W2149451018 endingPage "494012" @default.
- W2149451018 startingPage "494012" @default.
- W2149451018 abstract "Logarithmic Conformal Field Theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self avoiding walks, etc.), or of critical points in several classes of disordered systems (transition between plateaus in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non semi-simple associative algebras underlying these lattice models - such as the Temperley-Lieb algebra or the blob algebra - indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies to the structure of indecomposable modules, but also to fusion rules, and provides an `experimental' way of measuring couplings, such as the `number b' quantifying the logarithmic coupling of the stress energy tensor with its partner. Most results obtained so far have concerned boundary LCFTs, and the associated indecomposability in the chiral sector. While the bulk case is considerably more involved (mixing in general left and right moving sectors), progress has also been made in this direction recently, uncovering fascinating structures. This article provides a short general review of our work in this area." @default.
- W2149451018 created "2016-06-24" @default.
- W2149451018 creator A5001072764 @default.
- W2149451018 creator A5027386297 @default.
- W2149451018 creator A5056689592 @default.
- W2149451018 creator A5079911420 @default.
- W2149451018 creator A5089808487 @default.
- W2149451018 date "2013-11-20" @default.
- W2149451018 modified "2023-10-16" @default.
- W2149451018 title "Logarithmic conformal field theory: a lattice approach" @default.
- W2149451018 cites W1506955994 @default.
- W2149451018 cites W1507553136 @default.
- W2149451018 cites W1537486353 @default.
- W2149451018 cites W1591211570 @default.
- W2149451018 cites W1601473422 @default.
- W2149451018 cites W1621478737 @default.
- W2149451018 cites W1673812652 @default.
- W2149451018 cites W1965252739 @default.
- W2149451018 cites W1969148706 @default.
- W2149451018 cites W1969356271 @default.
- W2149451018 cites W1973800098 @default.
- W2149451018 cites W1980543267 @default.
- W2149451018 cites W1981397446 @default.
- W2149451018 cites W1983818053 @default.
- W2149451018 cites W1985851682 @default.
- W2149451018 cites W1986017208 @default.
- W2149451018 cites W1989547946 @default.
- W2149451018 cites W1991404205 @default.
- W2149451018 cites W1994577675 @default.
- W2149451018 cites W2006169813 @default.
- W2149451018 cites W2006294391 @default.
- W2149451018 cites W2007212649 @default.
- W2149451018 cites W2007573590 @default.
- W2149451018 cites W2009930506 @default.
- W2149451018 cites W2010301196 @default.
- W2149451018 cites W2012788855 @default.
- W2149451018 cites W2023953089 @default.
- W2149451018 cites W2027059032 @default.
- W2149451018 cites W2036072510 @default.
- W2149451018 cites W2037662791 @default.
- W2149451018 cites W2043228044 @default.
- W2149451018 cites W2045954626 @default.
- W2149451018 cites W2047317809 @default.
- W2149451018 cites W2050253754 @default.
- W2149451018 cites W2050879024 @default.
- W2149451018 cites W2051235662 @default.
- W2149451018 cites W2052467898 @default.
- W2149451018 cites W2054105898 @default.
- W2149451018 cites W2054506123 @default.
- W2149451018 cites W2060547366 @default.
- W2149451018 cites W2061000251 @default.
- W2149451018 cites W2062332204 @default.
- W2149451018 cites W2062790565 @default.
- W2149451018 cites W2069174333 @default.
- W2149451018 cites W2069182458 @default.
- W2149451018 cites W2069638618 @default.
- W2149451018 cites W2071055221 @default.
- W2149451018 cites W2079096409 @default.
- W2149451018 cites W2080763836 @default.
- W2149451018 cites W2083251253 @default.
- W2149451018 cites W2083515056 @default.
- W2149451018 cites W2083852516 @default.
- W2149451018 cites W2121036643 @default.
- W2149451018 cites W2121834386 @default.
- W2149451018 cites W2133045530 @default.
- W2149451018 cites W2136255594 @default.
- W2149451018 cites W2164964640 @default.
- W2149451018 cites W2315567303 @default.
- W2149451018 cites W2327900148 @default.
- W2149451018 cites W2952412947 @default.
- W2149451018 cites W3037410074 @default.
- W2149451018 cites W3098719199 @default.
- W2149451018 cites W3098732625 @default.
- W2149451018 cites W3100425240 @default.
- W2149451018 cites W3100985653 @default.
- W2149451018 cites W3102077547 @default.
- W2149451018 cites W3103140544 @default.
- W2149451018 cites W3104494248 @default.
- W2149451018 cites W3106531344 @default.
- W2149451018 cites W3125514462 @default.
- W2149451018 cites W4206688401 @default.
- W2149451018 cites W4292101331 @default.
- W2149451018 cites W4297699243 @default.
- W2149451018 cites W4300797343 @default.
- W2149451018 doi "https://doi.org/10.1088/1751-8113/46/49/494012" @default.
- W2149451018 hasPublicationYear "2013" @default.
- W2149451018 type Work @default.
- W2149451018 sameAs 2149451018 @default.
- W2149451018 citedByCount "28" @default.
- W2149451018 countsByYear W21494510182014 @default.
- W2149451018 countsByYear W21494510182015 @default.
- W2149451018 countsByYear W21494510182016 @default.
- W2149451018 countsByYear W21494510182017 @default.
- W2149451018 countsByYear W21494510182018 @default.
- W2149451018 countsByYear W21494510182019 @default.
- W2149451018 countsByYear W21494510182020 @default.
- W2149451018 countsByYear W21494510182022 @default.
- W2149451018 countsByYear W21494510182023 @default.