Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149484457> ?p ?o ?g. }
- W2149484457 endingPage "315" @default.
- W2149484457 startingPage "273" @default.
- W2149484457 abstract "Two asymptotic analyses of the generation of lee waves by horizontal flow at velocity U of a stratified fluid of buoyancy frequency N past a sphere of radius a are presented, for either weak or strong stratification, corresponding to either large or small internal Froude number F = U /( Na ), respectively. For F ⋙1, the fluid separates into two regions radially: an inner region of scale a with three-dimensional irrotational flow unaffected by the stratification, and an outer region of scale U / N with small-amplitude lee waves generated by the O (1) vertical motion in the inner region. For F ⋘1, the fluid separates into five layers vertically: from the lower dividing streamsurface situated at a distance U / N above the bottom of the sphere to the upper dividing streamsurface situated at a distance U / N below the top, there is a middle layer with two-dimensional horizontal irrotational flow; from the upper dividing streamsurface to the top of the sphere, and from the lower dividing streamsurface to the bottom, there are top and bottom transition layers, respectively, with three-dimensional flow; above the top and below the bottom, there are upper and lower layers, respectively, with small-amplitude lee waves generated by the O ( F ) vertical motion in the transition layers. The waves are calculated where they have small amplitudes. The forcing is represented by a source of mass: for F ⋙1, the surface distribution of singularities equivalent to the sphere in three-dimensional irrotational flow; for F ⋘1, the horizontal distribution of singularities equivalent, in the upper (resp. lower) layer, to the flat cut-off obstacle made up of the top (resp. bottom) portion of the sphere protruding above (resp. below) the upper (resp. lower) dividing streamsurface. The analysis is validated by comparison of the theoretical wave drag with existing experimental determinations. For F ⋙1, the drag coefficient decreases as (ln F +7/4-γ)/(4 F 4 ), with γ the Euler constant; for F ⋘1, it increases as $(32surd2)/(15upi)F^{3/2}$ . The waves have the crescent shape of the three-dimensional lee waves from a dipole, modulated by interferences associated with the finite size of the forcing. For strong stratification, the hydrostatic approximation is seen to produce correct leading-order drag, but incorrect waves." @default.
- W2149484457 created "2016-06-24" @default.
- W2149484457 creator A5055756653 @default.
- W2149484457 date "2007-02-15" @default.
- W2149484457 modified "2023-10-17" @default.
- W2149484457 title "Lee waves from a sphere in a stratified flow" @default.
- W2149484457 cites W1674216825 @default.
- W2149484457 cites W1964480389 @default.
- W2149484457 cites W1964658834 @default.
- W2149484457 cites W1967264940 @default.
- W2149484457 cites W1968369283 @default.
- W2149484457 cites W1968370031 @default.
- W2149484457 cites W1968691801 @default.
- W2149484457 cites W1975476005 @default.
- W2149484457 cites W1976034797 @default.
- W2149484457 cites W1977585080 @default.
- W2149484457 cites W1980141822 @default.
- W2149484457 cites W1980898122 @default.
- W2149484457 cites W1981694248 @default.
- W2149484457 cites W1982925617 @default.
- W2149484457 cites W1984662795 @default.
- W2149484457 cites W1984991557 @default.
- W2149484457 cites W1986318006 @default.
- W2149484457 cites W1988560105 @default.
- W2149484457 cites W1989567652 @default.
- W2149484457 cites W1991316106 @default.
- W2149484457 cites W1998608929 @default.
- W2149484457 cites W1999393425 @default.
- W2149484457 cites W2001273732 @default.
- W2149484457 cites W2001533826 @default.
- W2149484457 cites W2007457377 @default.
- W2149484457 cites W2009131578 @default.
- W2149484457 cites W2010471230 @default.
- W2149484457 cites W2010656698 @default.
- W2149484457 cites W2011512893 @default.
- W2149484457 cites W2013306177 @default.
- W2149484457 cites W2016715913 @default.
- W2149484457 cites W2018082621 @default.
- W2149484457 cites W2018471281 @default.
- W2149484457 cites W2018485467 @default.
- W2149484457 cites W2018900287 @default.
- W2149484457 cites W2026975480 @default.
- W2149484457 cites W2030090390 @default.
- W2149484457 cites W2030347707 @default.
- W2149484457 cites W2031256404 @default.
- W2149484457 cites W2033989675 @default.
- W2149484457 cites W2033992365 @default.
- W2149484457 cites W2034693793 @default.
- W2149484457 cites W2039744209 @default.
- W2149484457 cites W2041382426 @default.
- W2149484457 cites W2041839954 @default.
- W2149484457 cites W2044500831 @default.
- W2149484457 cites W2045799320 @default.
- W2149484457 cites W2047587052 @default.
- W2149484457 cites W2048989202 @default.
- W2149484457 cites W2050164317 @default.
- W2149484457 cites W2052463012 @default.
- W2149484457 cites W2054757635 @default.
- W2149484457 cites W2057665372 @default.
- W2149484457 cites W2058031806 @default.
- W2149484457 cites W2058999636 @default.
- W2149484457 cites W2059589424 @default.
- W2149484457 cites W2059837965 @default.
- W2149484457 cites W2061300819 @default.
- W2149484457 cites W2065027501 @default.
- W2149484457 cites W2068377084 @default.
- W2149484457 cites W2069486888 @default.
- W2149484457 cites W2069711595 @default.
- W2149484457 cites W2071145228 @default.
- W2149484457 cites W2072221568 @default.
- W2149484457 cites W2073568133 @default.
- W2149484457 cites W2082286645 @default.
- W2149484457 cites W2084703165 @default.
- W2149484457 cites W2087408448 @default.
- W2149484457 cites W2090424532 @default.
- W2149484457 cites W2093920609 @default.
- W2149484457 cites W2097970473 @default.
- W2149484457 cites W2100877846 @default.
- W2149484457 cites W2103037171 @default.
- W2149484457 cites W2109125330 @default.
- W2149484457 cites W2109481888 @default.
- W2149484457 cites W2114152926 @default.
- W2149484457 cites W2115155778 @default.
- W2149484457 cites W2116149259 @default.
- W2149484457 cites W2124540177 @default.
- W2149484457 cites W2127351212 @default.
- W2149484457 cites W2129362679 @default.
- W2149484457 cites W2130132315 @default.
- W2149484457 cites W2144324674 @default.
- W2149484457 cites W2145092636 @default.
- W2149484457 cites W2145931945 @default.
- W2149484457 cites W2148443961 @default.
- W2149484457 cites W2153121835 @default.
- W2149484457 cites W2154796175 @default.
- W2149484457 cites W2160666813 @default.
- W2149484457 cites W2162190662 @default.
- W2149484457 cites W2166628556 @default.
- W2149484457 cites W2168185791 @default.