Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149484532> ?p ?o ?g. }
- W2149484532 endingPage "1330" @default.
- W2149484532 startingPage "1310" @default.
- W2149484532 abstract "Abstract The evolutionary history of a population involves changes in size, movements and selection pressures through time. Reconstruction of population history based on modern genetic data tends to be averaged over time or to be biased by generally reflecting only recent or extreme events, leaving many population historic processes undetected. Temporal genetic data present opportunities to reveal more complex population histories and provide important insights into what processes have influenced modern genetic diversity. Here we provide a synopsis of methods available for the analysis of ancient genetic data. We review 29 ancient DNA studies, summarizing the analytical methods and general conclusions for each study. Using the serial coalescent and a model‐testing approach, we then re‐analyse data from two species represented by these data sets in a common interpretive framework. Our analyses show that phylochronologic data can reveal more about population history than modern data alone, thus revealing ‘cryptic’ population processes, and enable us to determine whether simple or complex models best explain the data. Our re‐analyses point to the need for novel methods that consider gene flow, multiple populations and population size in reconstruction of population history. We conclude that population genetic samples over large temporal and geographical scales, when analysed using more complex models and the serial coalescent, are critical to understand past population dynamics and provide important tools for reconstructing the evolutionary process." @default.
- W2149484532 created "2016-06-24" @default.
- W2149484532 creator A5039060186 @default.
- W2149484532 creator A5079005571 @default.
- W2149484532 date "2009-03-19" @default.
- W2149484532 modified "2023-10-02" @default.
- W2149484532 title "Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies" @default.
- W2149484532 cites W1550589515 @default.
- W2149484532 cites W1559437335 @default.
- W2149484532 cites W1574062644 @default.
- W2149484532 cites W1892029173 @default.
- W2149484532 cites W1892207068 @default.
- W2149484532 cites W1946395217 @default.
- W2149484532 cites W1964350046 @default.
- W2149484532 cites W1964735403 @default.
- W2149484532 cites W1967161447 @default.
- W2149484532 cites W1969861256 @default.
- W2149484532 cites W1973231394 @default.
- W2149484532 cites W1973513517 @default.
- W2149484532 cites W1974900938 @default.
- W2149484532 cites W1977016644 @default.
- W2149484532 cites W1978546114 @default.
- W2149484532 cites W1997722194 @default.
- W2149484532 cites W1999634133 @default.
- W2149484532 cites W2005743153 @default.
- W2149484532 cites W2006467490 @default.
- W2149484532 cites W2011288064 @default.
- W2149484532 cites W2014473794 @default.
- W2149484532 cites W2016035670 @default.
- W2149484532 cites W2017700812 @default.
- W2149484532 cites W2017815194 @default.
- W2149484532 cites W2018483808 @default.
- W2149484532 cites W2020823827 @default.
- W2149484532 cites W2023025638 @default.
- W2149484532 cites W2023659163 @default.
- W2149484532 cites W2035797438 @default.
- W2149484532 cites W2039208027 @default.
- W2149484532 cites W2039353264 @default.
- W2149484532 cites W2041903808 @default.
- W2149484532 cites W2044618520 @default.
- W2149484532 cites W2045973738 @default.
- W2149484532 cites W2050707857 @default.
- W2149484532 cites W2052813974 @default.
- W2149484532 cites W2054975430 @default.
- W2149484532 cites W2056095252 @default.
- W2149484532 cites W2068825209 @default.
- W2149484532 cites W2069921364 @default.
- W2149484532 cites W2085050414 @default.
- W2149484532 cites W2101294025 @default.
- W2149484532 cites W2107040819 @default.
- W2149484532 cites W2108419066 @default.
- W2149484532 cites W2108824798 @default.
- W2149484532 cites W2110481174 @default.
- W2149484532 cites W2110751540 @default.
- W2149484532 cites W2110835349 @default.
- W2149484532 cites W2114060254 @default.
- W2149484532 cites W2114976667 @default.
- W2149484532 cites W2116416291 @default.
- W2149484532 cites W2119832545 @default.
- W2149484532 cites W2123575603 @default.
- W2149484532 cites W2128078277 @default.
- W2149484532 cites W2128114769 @default.
- W2149484532 cites W2128339082 @default.
- W2149484532 cites W2132045390 @default.
- W2149484532 cites W2138579968 @default.
- W2149484532 cites W2139115044 @default.
- W2149484532 cites W2140875010 @default.
- W2149484532 cites W2147440634 @default.
- W2149484532 cites W2148994713 @default.
- W2149484532 cites W2151068559 @default.
- W2149484532 cites W2153432740 @default.
- W2149484532 cites W2153784123 @default.
- W2149484532 cites W2156254413 @default.
- W2149484532 cites W2156610160 @default.
- W2149484532 cites W2157246727 @default.
- W2149484532 cites W2160840613 @default.
- W2149484532 cites W2163357043 @default.
- W2149484532 cites W2164730459 @default.
- W2149484532 cites W2165038845 @default.
- W2149484532 cites W2166680137 @default.
- W2149484532 cites W2167740275 @default.
- W2149484532 cites W4210633230 @default.
- W2149484532 cites W4239366021 @default.
- W2149484532 cites W4385787067 @default.
- W2149484532 cites W2082501132 @default.
- W2149484532 cites W2571924100 @default.
- W2149484532 doi "https://doi.org/10.1111/j.1365-294x.2009.04092.x" @default.
- W2149484532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19281471" @default.
- W2149484532 hasPublicationYear "2009" @default.
- W2149484532 type Work @default.
- W2149484532 sameAs 2149484532 @default.
- W2149484532 citedByCount "103" @default.
- W2149484532 countsByYear W21494845322012 @default.
- W2149484532 countsByYear W21494845322013 @default.
- W2149484532 countsByYear W21494845322014 @default.
- W2149484532 countsByYear W21494845322015 @default.
- W2149484532 countsByYear W21494845322016 @default.
- W2149484532 countsByYear W21494845322017 @default.