Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149610476> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2149610476 endingPage "273" @default.
- W2149610476 startingPage "259" @default.
- W2149610476 abstract "This work presents a convenient way to solve the non-relativistic Schrödinger equation numerically for a general three-particle system including full correlation and mass polarization. Both Coulombic and non-Coulombic interactions can be studied. The eigensolver is based on a second order dynamical system treatment (particle method). The Hamiltonian matrix never needs to be realized. The wavefunction evolves towards the steady state solution for which the Schrödinger equation is fulfilled. Subsequent Richardson extrapolations for several meshes are then made symbolically in matlab to obtain the continuum solution. The computer C code is tested under Linux 64 bit and both double and extended precision versions are provided. Test runs are exemplified and, when possible, compared with corresponding values in the literature. The computer code is small and self contained making it unusually simple to compile and run on any system. Both serial and parallel computer runs are straight forward. Program title: corr3p_tr Catalogue identifier: AEYR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEYR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 15025 No. of bytes in distributed program, including test data, etc.: 156430 Distribution format: tar.gz Programming language: ANSI C. Computer: Linux 64bit PC. Operating system: Linux 64bit. RAM: 300 M bytes Classification: 2.7, 2.8, 2.9. Nature of problem: The Schrödinger equation for an arbitrary three-particle system is solved using finite differences and a fast particle method for the eigenvalue problem [20, 21, 23]. Solution method: A fast eigensolver is applied (see Appendix). This solver works for both symmetrical and nonsymmetrical matrices (which opens up for more accurate nonsymmetrical finite difference expressions to be applied at the boundaries). The three-particle Schrödinger equation is transformed in two major steps. First step is to introduce the function Q(r1,r2,μ)=r1r2(1−μ2)φ(r1,r2,μ), where μ=cos(012). The cusps (r1=r2,μ=1) are then transformed into boundary conditions. The derivatives of Q are then continuous in the whole computational space and thus the finite difference expressions are well defined. Three-particle coalescence (r1=r2=0,μ) is treated in the same way. The second step is to replace Q(r1,r2,μ) with (2x1x2)−1Q(x1,x2,μ). The space (x1,x2,μ) is much more appropriate for a finite difference approach since the square roots x1=r1,x2=r2 allow the boundaries to be much further out. The non-linearity of the x-grid also leads to a finer description near the nucleus and a coarser one further out thus resulting in a saving of grid points. Also, in contrast to the usual variable r12, we have instead used μ which is an independent variable. This simplifies the mathematics and numerical treatments. Several different grids can naturally run completely independent of each other thus making parallel computations trivial. From several grid results the physical property of interest is extrapolated to continuum space. The extrapolations are made in a matlab m-script where all computations can be made symbolically so the loss of decimal figures are minimized during this process. The computer code, including correlation effects and mass polarization, is highly optimized and deals with either triangular or quadratic domains in (x1,x2). Restrictions: The amount of CPU time may become unreasonable for states needing boundary conditions very far beyond the origin. Also if the condition number of the corresponding Hamiltonian matrix is very high, the number of iterations will grow. The use of double precision computations also puts a limit on the accuracy of extrapolated results to about 6–7 decimal figures. Unusual features: The numerical solver is based on a particle method presented in [20, 21, 23]. In the Appendix we provide specific details of dealing with eigenvalue problems. The program uses a 64 bit environment (Linux 64bit). Parallel runs can be made conveniently through a simple bash script. Additional comments: The discretized wavefunction is complete on every given grid. New interactions can therefore conveniently be added to the Hamiltonian without the need to seek for an appropriate basis set. Running time: Given a modern CPU such as Intel core i5 and that the outer boundary conditions of r1 and r2 is limited to, say 16 atomic units, the total CPU time of totally 10 grids of a serial run is typically limited to a few minutes. One can then expect about 6–7 correct figures in the extrapolated eigenvalue. A single grid of say h1=h2=h3=1/16 converges in less than 1 s (with an error in the eigenvalue of about 1 percent). Parallel runs are possible and can further minimize CPU times for more demanding tasks. References: [20] S. Edvardsson, M. Gulliksson, and J. Persson. J. Appl. Mech. ASME, 79 (2012) 021012. [21] S. Edvardsson, M. Neuman, P Edstrom, and H. Olin. Comp. Phys. Commun. 197 (2015) 169. [23] M. Neuman, S. Edvardsson, P. Edstrom, Opt. Lett. 40 (2015) 4325." @default.
- W2149610476 created "2016-06-24" @default.
- W2149610476 creator A5031545945 @default.
- W2149610476 creator A5072147515 @default.
- W2149610476 creator A5080149250 @default.
- W2149610476 date "2016-03-01" @default.
- W2149610476 modified "2023-10-18" @default.
- W2149610476 title "corr3p_tr: A particle approach for the general three-body problem" @default.
- W2149610476 cites W1511913219 @default.
- W2149610476 cites W1589149526 @default.
- W2149610476 cites W1871733006 @default.
- W2149610476 cites W1965202819 @default.
- W2149610476 cites W1972551535 @default.
- W2149610476 cites W1975768689 @default.
- W2149610476 cites W1980875578 @default.
- W2149610476 cites W1981267508 @default.
- W2149610476 cites W1986950391 @default.
- W2149610476 cites W1987973052 @default.
- W2149610476 cites W1988122227 @default.
- W2149610476 cites W1996290894 @default.
- W2149610476 cites W1998399936 @default.
- W2149610476 cites W2001000117 @default.
- W2149610476 cites W2006204334 @default.
- W2149610476 cites W2007293101 @default.
- W2149610476 cites W2010399932 @default.
- W2149610476 cites W2012911012 @default.
- W2149610476 cites W2017953455 @default.
- W2149610476 cites W2020933600 @default.
- W2149610476 cites W2025608972 @default.
- W2149610476 cites W2042932759 @default.
- W2149610476 cites W2046001409 @default.
- W2149610476 cites W2046477073 @default.
- W2149610476 cites W2051334984 @default.
- W2149610476 cites W2069342338 @default.
- W2149610476 cites W2079140893 @default.
- W2149610476 cites W2079647879 @default.
- W2149610476 cites W2084000529 @default.
- W2149610476 cites W2098432400 @default.
- W2149610476 cites W2098914411 @default.
- W2149610476 cites W2108838154 @default.
- W2149610476 cites W2113448505 @default.
- W2149610476 cites W2166203634 @default.
- W2149610476 cites W2798909945 @default.
- W2149610476 cites W2947056241 @default.
- W2149610476 cites W3092549130 @default.
- W2149610476 doi "https://doi.org/10.1016/j.cpc.2015.10.022" @default.
- W2149610476 hasPublicationYear "2016" @default.
- W2149610476 type Work @default.
- W2149610476 sameAs 2149610476 @default.
- W2149610476 citedByCount "3" @default.
- W2149610476 countsByYear W21496104762017 @default.
- W2149610476 countsByYear W21496104762019 @default.
- W2149610476 crossrefType "journal-article" @default.
- W2149610476 hasAuthorship W2149610476A5031545945 @default.
- W2149610476 hasAuthorship W2149610476A5072147515 @default.
- W2149610476 hasAuthorship W2149610476A5080149250 @default.
- W2149610476 hasConcept C11413529 @default.
- W2149610476 hasConcept C154504017 @default.
- W2149610476 hasConcept C16910744 @default.
- W2149610476 hasConcept C169590947 @default.
- W2149610476 hasConcept C199360897 @default.
- W2149610476 hasConcept C2778241615 @default.
- W2149610476 hasConcept C2778770139 @default.
- W2149610476 hasConcept C35912277 @default.
- W2149610476 hasConcept C41008148 @default.
- W2149610476 hasConcept C43364308 @default.
- W2149610476 hasConcept C45374587 @default.
- W2149610476 hasConcept C459310 @default.
- W2149610476 hasConceptScore W2149610476C11413529 @default.
- W2149610476 hasConceptScore W2149610476C154504017 @default.
- W2149610476 hasConceptScore W2149610476C16910744 @default.
- W2149610476 hasConceptScore W2149610476C169590947 @default.
- W2149610476 hasConceptScore W2149610476C199360897 @default.
- W2149610476 hasConceptScore W2149610476C2778241615 @default.
- W2149610476 hasConceptScore W2149610476C2778770139 @default.
- W2149610476 hasConceptScore W2149610476C35912277 @default.
- W2149610476 hasConceptScore W2149610476C41008148 @default.
- W2149610476 hasConceptScore W2149610476C43364308 @default.
- W2149610476 hasConceptScore W2149610476C45374587 @default.
- W2149610476 hasConceptScore W2149610476C459310 @default.
- W2149610476 hasLocation W21496104761 @default.
- W2149610476 hasOpenAccess W2149610476 @default.
- W2149610476 hasPrimaryLocation W21496104761 @default.
- W2149610476 hasRelatedWork W1709351508 @default.
- W2149610476 hasRelatedWork W1975412557 @default.
- W2149610476 hasRelatedWork W1983470465 @default.
- W2149610476 hasRelatedWork W2020998899 @default.
- W2149610476 hasRelatedWork W2035958216 @default.
- W2149610476 hasRelatedWork W2110561435 @default.
- W2149610476 hasRelatedWork W2149610476 @default.
- W2149610476 hasRelatedWork W2300147658 @default.
- W2149610476 hasRelatedWork W2402395594 @default.
- W2149610476 hasRelatedWork W4299374100 @default.
- W2149610476 hasVolume "200" @default.
- W2149610476 isParatext "false" @default.
- W2149610476 isRetracted "false" @default.
- W2149610476 magId "2149610476" @default.
- W2149610476 workType "article" @default.