Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149623757> ?p ?o ?g. }
- W2149623757 endingPage "1393" @default.
- W2149623757 startingPage "1380" @default.
- W2149623757 abstract "In this paper, we study the effective semi-supervised hashing method under the framework of regularized learning-based hashing. A nonlinear hash function is introduced to capture the underlying relationship among data points. Thus, the dimensionality of the matrix for computation is not only independent from the dimensionality of the original data space but also much smaller than the one using linear hash function. To effectively deal with the error accumulated during converting the real-value embeddings into the binary code after relaxation, we propose a semi-supervised nonlinear hashing algorithm using bootstrap sequential projection learning which effectively corrects the errors by taking into account of all the previous learned bits holistically without incurring the extra computational overhead. Experimental results on the six benchmark data sets demonstrate that the presented method outperforms the state-of-the-art hashing algorithms at a large margin." @default.
- W2149623757 created "2016-06-24" @default.
- W2149623757 creator A5034363096 @default.
- W2149623757 creator A5036577787 @default.
- W2149623757 creator A5037942269 @default.
- W2149623757 creator A5052757755 @default.
- W2149623757 creator A5062252650 @default.
- W2149623757 date "2013-06-01" @default.
- W2149623757 modified "2023-10-16" @default.
- W2149623757 title "Semi-Supervised Nonlinear Hashing Using Bootstrap Sequential Projection Learning" @default.
- W2149623757 cites W1562412850 @default.
- W2149623757 cites W1835419070 @default.
- W2149623757 cites W1971616954 @default.
- W2149623757 cites W1987040325 @default.
- W2149623757 cites W1994389483 @default.
- W2149623757 cites W2019076926 @default.
- W2149623757 cites W2024668293 @default.
- W2149623757 cites W2027922120 @default.
- W2149623757 cites W2036163530 @default.
- W2149623757 cites W2044195942 @default.
- W2149623757 cites W2049644877 @default.
- W2149623757 cites W2053017876 @default.
- W2149623757 cites W2085922539 @default.
- W2149623757 cites W2099253838 @default.
- W2149623757 cites W2111110737 @default.
- W2149623757 cites W2124386111 @default.
- W2149623757 cites W2133296809 @default.
- W2149623757 cites W2145607950 @default.
- W2149623757 cites W2147069236 @default.
- W2149623757 cites W2147717514 @default.
- W2149623757 cites W2154956324 @default.
- W2149623757 cites W2162006472 @default.
- W2149623757 cites W2162881463 @default.
- W2149623757 cites W2166049352 @default.
- W2149623757 cites W2168467811 @default.
- W2149623757 cites W2169783907 @default.
- W2149623757 cites W2543932557 @default.
- W2149623757 cites W2913932916 @default.
- W2149623757 cites W4230940751 @default.
- W2149623757 cites W2067771944 @default.
- W2149623757 doi "https://doi.org/10.1109/tkde.2012.76" @default.
- W2149623757 hasPublicationYear "2013" @default.
- W2149623757 type Work @default.
- W2149623757 sameAs 2149623757 @default.
- W2149623757 citedByCount "80" @default.
- W2149623757 countsByYear W21496237572012 @default.
- W2149623757 countsByYear W21496237572013 @default.
- W2149623757 countsByYear W21496237572014 @default.
- W2149623757 countsByYear W21496237572015 @default.
- W2149623757 countsByYear W21496237572016 @default.
- W2149623757 countsByYear W21496237572017 @default.
- W2149623757 countsByYear W21496237572018 @default.
- W2149623757 countsByYear W21496237572019 @default.
- W2149623757 countsByYear W21496237572020 @default.
- W2149623757 countsByYear W21496237572021 @default.
- W2149623757 countsByYear W21496237572022 @default.
- W2149623757 countsByYear W21496237572023 @default.
- W2149623757 crossrefType "journal-article" @default.
- W2149623757 hasAuthorship W2149623757A5034363096 @default.
- W2149623757 hasAuthorship W2149623757A5036577787 @default.
- W2149623757 hasAuthorship W2149623757A5037942269 @default.
- W2149623757 hasAuthorship W2149623757A5052757755 @default.
- W2149623757 hasAuthorship W2149623757A5062252650 @default.
- W2149623757 hasConcept C111030470 @default.
- W2149623757 hasConcept C11413529 @default.
- W2149623757 hasConcept C116058348 @default.
- W2149623757 hasConcept C119857082 @default.
- W2149623757 hasConcept C122907437 @default.
- W2149623757 hasConcept C13280743 @default.
- W2149623757 hasConcept C133667856 @default.
- W2149623757 hasConcept C138111711 @default.
- W2149623757 hasConcept C153180895 @default.
- W2149623757 hasConcept C154945302 @default.
- W2149623757 hasConcept C185798385 @default.
- W2149623757 hasConcept C187062812 @default.
- W2149623757 hasConcept C205649164 @default.
- W2149623757 hasConcept C33923547 @default.
- W2149623757 hasConcept C38652104 @default.
- W2149623757 hasConcept C41008148 @default.
- W2149623757 hasConcept C48372109 @default.
- W2149623757 hasConcept C63435697 @default.
- W2149623757 hasConcept C67388219 @default.
- W2149623757 hasConcept C74270461 @default.
- W2149623757 hasConcept C774472 @default.
- W2149623757 hasConcept C94375191 @default.
- W2149623757 hasConcept C99138194 @default.
- W2149623757 hasConceptScore W2149623757C111030470 @default.
- W2149623757 hasConceptScore W2149623757C11413529 @default.
- W2149623757 hasConceptScore W2149623757C116058348 @default.
- W2149623757 hasConceptScore W2149623757C119857082 @default.
- W2149623757 hasConceptScore W2149623757C122907437 @default.
- W2149623757 hasConceptScore W2149623757C13280743 @default.
- W2149623757 hasConceptScore W2149623757C133667856 @default.
- W2149623757 hasConceptScore W2149623757C138111711 @default.
- W2149623757 hasConceptScore W2149623757C153180895 @default.
- W2149623757 hasConceptScore W2149623757C154945302 @default.
- W2149623757 hasConceptScore W2149623757C185798385 @default.
- W2149623757 hasConceptScore W2149623757C187062812 @default.