Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149658402> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2149658402 endingPage "4720" @default.
- W2149658402 startingPage "4683" @default.
- W2149658402 abstract "We introduce multidimensional Schur multipliers and characterise them, generalising well-known results by Grothendieck and Peller. We define a multidimensional version of the two-dimensional operator multipliers studied recently by Kissin and Shulman. The multidimensional operator multipliers are defined as elements of the minimal tensor product of several <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras satisfying certain boundedness conditions. In the case of commutative <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras, the multidimensional operator multipliers reduce to continuous multidimensional Schur multipliers. We show that the multipliers with respect to some given representations of the corresponding <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras do not change if the representations are replaced by approximately equivalent ones. We establish a non-commutative and multidimensional version of the characterisations by Grothendieck and Peller which shows that universal operator multipliers can be obtained as certain weak limits of elements of the algebraic tensor product of the corresponding <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>C^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras." @default.
- W2149658402 created "2016-06-24" @default.
- W2149658402 creator A5035950080 @default.
- W2149658402 creator A5065370781 @default.
- W2149658402 creator A5082920747 @default.
- W2149658402 date "2009-04-10" @default.
- W2149658402 modified "2023-09-27" @default.
- W2149658402 title "Multidimensional operator multipliers" @default.
- W2149658402 cites W151053395 @default.
- W2149658402 cites W1523687058 @default.
- W2149658402 cites W1966255961 @default.
- W2149658402 cites W1990975915 @default.
- W2149658402 cites W2014566831 @default.
- W2149658402 cites W2029539911 @default.
- W2149658402 cites W2063634434 @default.
- W2149658402 cites W2084609103 @default.
- W2149658402 cites W2088891300 @default.
- W2149658402 cites W2141926141 @default.
- W2149658402 cites W2171365950 @default.
- W2149658402 cites W243605850 @default.
- W2149658402 cites W2478993345 @default.
- W2149658402 cites W2963235163 @default.
- W2149658402 cites W4213358110 @default.
- W2149658402 cites W4241008512 @default.
- W2149658402 cites W4247585262 @default.
- W2149658402 cites W4252024823 @default.
- W2149658402 cites W4253430477 @default.
- W2149658402 doi "https://doi.org/10.1090/s0002-9947-09-04771-0" @default.
- W2149658402 hasPublicationYear "2009" @default.
- W2149658402 type Work @default.
- W2149658402 sameAs 2149658402 @default.
- W2149658402 citedByCount "37" @default.
- W2149658402 countsByYear W21496584022012 @default.
- W2149658402 countsByYear W21496584022014 @default.
- W2149658402 countsByYear W21496584022015 @default.
- W2149658402 countsByYear W21496584022016 @default.
- W2149658402 countsByYear W21496584022017 @default.
- W2149658402 countsByYear W21496584022018 @default.
- W2149658402 countsByYear W21496584022019 @default.
- W2149658402 countsByYear W21496584022020 @default.
- W2149658402 countsByYear W21496584022022 @default.
- W2149658402 countsByYear W21496584022023 @default.
- W2149658402 crossrefType "journal-article" @default.
- W2149658402 hasAuthorship W2149658402A5035950080 @default.
- W2149658402 hasAuthorship W2149658402A5065370781 @default.
- W2149658402 hasAuthorship W2149658402A5082920747 @default.
- W2149658402 hasBestOaLocation W21496584021 @default.
- W2149658402 hasConcept C104317684 @default.
- W2149658402 hasConcept C11413529 @default.
- W2149658402 hasConcept C154945302 @default.
- W2149658402 hasConcept C158448853 @default.
- W2149658402 hasConcept C17020691 @default.
- W2149658402 hasConcept C185592680 @default.
- W2149658402 hasConcept C18903297 @default.
- W2149658402 hasConcept C2776321320 @default.
- W2149658402 hasConcept C2777299769 @default.
- W2149658402 hasConcept C33923547 @default.
- W2149658402 hasConcept C41008148 @default.
- W2149658402 hasConcept C55493867 @default.
- W2149658402 hasConcept C77088390 @default.
- W2149658402 hasConcept C86339819 @default.
- W2149658402 hasConcept C86803240 @default.
- W2149658402 hasConceptScore W2149658402C104317684 @default.
- W2149658402 hasConceptScore W2149658402C11413529 @default.
- W2149658402 hasConceptScore W2149658402C154945302 @default.
- W2149658402 hasConceptScore W2149658402C158448853 @default.
- W2149658402 hasConceptScore W2149658402C17020691 @default.
- W2149658402 hasConceptScore W2149658402C185592680 @default.
- W2149658402 hasConceptScore W2149658402C18903297 @default.
- W2149658402 hasConceptScore W2149658402C2776321320 @default.
- W2149658402 hasConceptScore W2149658402C2777299769 @default.
- W2149658402 hasConceptScore W2149658402C33923547 @default.
- W2149658402 hasConceptScore W2149658402C41008148 @default.
- W2149658402 hasConceptScore W2149658402C55493867 @default.
- W2149658402 hasConceptScore W2149658402C77088390 @default.
- W2149658402 hasConceptScore W2149658402C86339819 @default.
- W2149658402 hasConceptScore W2149658402C86803240 @default.
- W2149658402 hasIssue "9" @default.
- W2149658402 hasLocation W21496584021 @default.
- W2149658402 hasLocation W21496584022 @default.
- W2149658402 hasLocation W21496584023 @default.
- W2149658402 hasOpenAccess W2149658402 @default.
- W2149658402 hasPrimaryLocation W21496584021 @default.
- W2149658402 hasRelatedWork W151193258 @default.
- W2149658402 hasRelatedWork W1529400504 @default.
- W2149658402 hasRelatedWork W1871911958 @default.
- W2149658402 hasRelatedWork W1892467659 @default.
- W2149658402 hasRelatedWork W2060388431 @default.
- W2149658402 hasRelatedWork W2348710178 @default.
- W2149658402 hasRelatedWork W2349865494 @default.
- W2149658402 hasRelatedWork W2361676460 @default.
- W2149658402 hasRelatedWork W3201926073 @default.
- W2149658402 hasRelatedWork W73525116 @default.
- W2149658402 hasVolume "361" @default.
- W2149658402 isParatext "false" @default.
- W2149658402 isRetracted "false" @default.
- W2149658402 magId "2149658402" @default.
- W2149658402 workType "article" @default.