Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149668082> ?p ?o ?g. }
- W2149668082 endingPage "1484" @default.
- W2149668082 startingPage "1468" @default.
- W2149668082 abstract "In rapid parallel magnetic resonance imaging, the problem of image reconstruction is challenging. Here, a novel image reconstruction technique for data acquired along any general trajectory in neural network framework, called Composite Reconstruction And Unaliasing using Neural Networks (CRAUNN), is proposed. CRAUNN is based on the observation that the nature of aliasing remains unchanged whether the undersampled acquisition contains only low frequencies or includes high frequencies too. Here, the transformation needed to reconstruct the alias-free image from the aliased coil images is learnt, using acquisitions consisting of densely sampled low frequencies. Neural networks are made use of as machine learning tools to learn the transformation, in order to obtain the desired alias-free image for actual acquisitions containing sparsely sampled low as well as high frequencies. CRAUNN operates in the image domain and does not require explicit coil sensitivity estimation. It is also independent of the sampling trajectory used, and could be applied to arbitrary trajectories as well. As a pilot trial, the technique is first applied to Cartesian trajectory-sampled data. Experiments performed using radial and spiral trajectories on real and synthetic data, illustrate the performance of the method. The reconstruction errors depend on the acceleration factor as well as the sampling trajectory. It is found that higher acceleration factors can be obtained when radial trajectories are used. Comparisons against existing techniques are presented. CRAUNN has been found to perform on par with the state-of-the-art techniques. Acceleration factors of up to 4, 6 and 4 are achieved in Cartesian, radial and spiral cases, respectively." @default.
- W2149668082 created "2016-06-24" @default.
- W2149668082 creator A5005516820 @default.
- W2149668082 creator A5014371833 @default.
- W2149668082 creator A5069802599 @default.
- W2149668082 date "2010-12-01" @default.
- W2149668082 modified "2023-10-16" @default.
- W2149668082 title "Composite MR image reconstruction and unaliasing for general trajectories using neural networks" @default.
- W2149668082 cites W1498436455 @default.
- W2149668082 cites W1971342458 @default.
- W2149668082 cites W1971571088 @default.
- W2149668082 cites W1975055965 @default.
- W2149668082 cites W1991732515 @default.
- W2149668082 cites W1999584433 @default.
- W2149668082 cites W2003300740 @default.
- W2149668082 cites W2040486018 @default.
- W2149668082 cites W2059740240 @default.
- W2149668082 cites W2068605609 @default.
- W2149668082 cites W2105972569 @default.
- W2149668082 cites W2111388536 @default.
- W2149668082 cites W2133665775 @default.
- W2149668082 cites W2147336975 @default.
- W2149668082 cites W2151354228 @default.
- W2149668082 cites W2153374208 @default.
- W2149668082 cites W4233764193 @default.
- W2149668082 cites W4246884955 @default.
- W2149668082 cites W4249760698 @default.
- W2149668082 cites W4375819300 @default.
- W2149668082 doi "https://doi.org/10.1016/j.mri.2010.06.021" @default.
- W2149668082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20850243" @default.
- W2149668082 hasPublicationYear "2010" @default.
- W2149668082 type Work @default.
- W2149668082 sameAs 2149668082 @default.
- W2149668082 citedByCount "4" @default.
- W2149668082 countsByYear W21496680822012 @default.
- W2149668082 countsByYear W21496680822015 @default.
- W2149668082 countsByYear W21496680822018 @default.
- W2149668082 crossrefType "journal-article" @default.
- W2149668082 hasAuthorship W2149668082A5005516820 @default.
- W2149668082 hasAuthorship W2149668082A5014371833 @default.
- W2149668082 hasAuthorship W2149668082A5069802599 @default.
- W2149668082 hasConcept C104317684 @default.
- W2149668082 hasConcept C106131492 @default.
- W2149668082 hasConcept C11413529 @default.
- W2149668082 hasConcept C117896860 @default.
- W2149668082 hasConcept C121332964 @default.
- W2149668082 hasConcept C124101348 @default.
- W2149668082 hasConcept C1276947 @default.
- W2149668082 hasConcept C136536468 @default.
- W2149668082 hasConcept C13662910 @default.
- W2149668082 hasConcept C140779682 @default.
- W2149668082 hasConcept C141379421 @default.
- W2149668082 hasConcept C154945302 @default.
- W2149668082 hasConcept C16038011 @default.
- W2149668082 hasConcept C185592680 @default.
- W2149668082 hasConcept C204241405 @default.
- W2149668082 hasConcept C2524010 @default.
- W2149668082 hasConcept C31972630 @default.
- W2149668082 hasConcept C33923547 @default.
- W2149668082 hasConcept C4069607 @default.
- W2149668082 hasConcept C41008148 @default.
- W2149668082 hasConcept C46681722 @default.
- W2149668082 hasConcept C50644808 @default.
- W2149668082 hasConcept C55493867 @default.
- W2149668082 hasConcept C74650414 @default.
- W2149668082 hasConceptScore W2149668082C104317684 @default.
- W2149668082 hasConceptScore W2149668082C106131492 @default.
- W2149668082 hasConceptScore W2149668082C11413529 @default.
- W2149668082 hasConceptScore W2149668082C117896860 @default.
- W2149668082 hasConceptScore W2149668082C121332964 @default.
- W2149668082 hasConceptScore W2149668082C124101348 @default.
- W2149668082 hasConceptScore W2149668082C1276947 @default.
- W2149668082 hasConceptScore W2149668082C136536468 @default.
- W2149668082 hasConceptScore W2149668082C13662910 @default.
- W2149668082 hasConceptScore W2149668082C140779682 @default.
- W2149668082 hasConceptScore W2149668082C141379421 @default.
- W2149668082 hasConceptScore W2149668082C154945302 @default.
- W2149668082 hasConceptScore W2149668082C16038011 @default.
- W2149668082 hasConceptScore W2149668082C185592680 @default.
- W2149668082 hasConceptScore W2149668082C204241405 @default.
- W2149668082 hasConceptScore W2149668082C2524010 @default.
- W2149668082 hasConceptScore W2149668082C31972630 @default.
- W2149668082 hasConceptScore W2149668082C33923547 @default.
- W2149668082 hasConceptScore W2149668082C4069607 @default.
- W2149668082 hasConceptScore W2149668082C41008148 @default.
- W2149668082 hasConceptScore W2149668082C46681722 @default.
- W2149668082 hasConceptScore W2149668082C50644808 @default.
- W2149668082 hasConceptScore W2149668082C55493867 @default.
- W2149668082 hasConceptScore W2149668082C74650414 @default.
- W2149668082 hasIssue "10" @default.
- W2149668082 hasLocation W21496680821 @default.
- W2149668082 hasLocation W21496680822 @default.
- W2149668082 hasOpenAccess W2149668082 @default.
- W2149668082 hasPrimaryLocation W21496680821 @default.
- W2149668082 hasRelatedWork W2000407620 @default.
- W2149668082 hasRelatedWork W2085640701 @default.
- W2149668082 hasRelatedWork W2086739368 @default.
- W2149668082 hasRelatedWork W2108496175 @default.