Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149675395> ?p ?o ?g. }
- W2149675395 abstract "We collected data from over 80 different cytotoxicity assays from Pfizer in-house work as well as from public sources and investigated the feasibility of using these datasets, which come from a variety of assay formats (having for instance different measured endpoints, incubation times and cell types) to derive a general cytotoxicity model. Our main aim was to derive a computational model based on this data that can highlight potentially cytotoxic series early in the drug discovery process.We developed Bayesian models for each assay using Scitegic FCFP_6 fingerprints together with the default physical property descriptors. Pairs of assays that are mutually predictive were identified by calculating the ROC score of the model derived from one predicting the experimental outcome of the other, and vice versa. The prediction pairs were visualised in a network where nodes are assays and edges are drawn for ROC scores >0.60 in both directions. We observed that, if assay pairs (A, B) and (B, C) were mutually predictive, this was often not the case for the pair (A, C). The results from 48 assays connected to each other were merged in one training set of 145590 compounds and a general cytotoxicity model was derived. The model has been cross-validated as well as being validated with a set of 89 FDA approved drug compounds.We have generated a predictive model for general cytotoxicity which could speed up the drug discovery process in multiple ways. Firstly, this analysis has shown that the outcomes of different assay formats can be mutually predictive, thus removing the need to submit a potentially toxic compound to multiple assays. Furthermore, this analysis enables selection of (a) the easiest-to-run assay as corporate standard, or (b) the most descriptive panel of assays by including assays whose outcomes are not mutually predictive. The model is no replacement for a cytotoxicity assay but opens the opportunity to be more selective about which compounds are to be submitted to it. On a more mundane level, having data from more than 80 assays in one dataset answers, for the first time, the question - what are the known cytotoxic compounds from the Pfizer compound collection? Finally, having a predictive cytotoxicity model will assist the design of new compounds with a desired cytotoxicity profile, since comparison of the model output with data from an in vitro safety/toxicology assay suggests one is predictive of the other." @default.
- W2149675395 created "2016-06-24" @default.
- W2149675395 creator A5026586349 @default.
- W2149675395 creator A5037571461 @default.
- W2149675395 creator A5067005872 @default.
- W2149675395 creator A5083958681 @default.
- W2149675395 date "2010-12-01" @default.
- W2149675395 modified "2023-09-26" @default.
- W2149675395 title "Predicting cytotoxicity from heterogeneous data sources with Bayesian learning" @default.
- W2149675395 cites W1928390080 @default.
- W2149675395 cites W1968506227 @default.
- W2149675395 cites W1968996837 @default.
- W2149675395 cites W1969644115 @default.
- W2149675395 cites W1972821149 @default.
- W2149675395 cites W1975618638 @default.
- W2149675395 cites W1978253274 @default.
- W2149675395 cites W1983610905 @default.
- W2149675395 cites W1990691597 @default.
- W2149675395 cites W2017016867 @default.
- W2149675395 cites W2022868257 @default.
- W2149675395 cites W2042721486 @default.
- W2149675395 cites W2060172993 @default.
- W2149675395 cites W2066092964 @default.
- W2149675395 cites W2078065540 @default.
- W2149675395 cites W2081659180 @default.
- W2149675395 cites W2082577020 @default.
- W2149675395 cites W2105317622 @default.
- W2149675395 cites W2110465883 @default.
- W2149675395 cites W2116372091 @default.
- W2149675395 cites W2121175754 @default.
- W2149675395 cites W2127553917 @default.
- W2149675395 cites W2133960769 @default.
- W2149675395 cites W2141455139 @default.
- W2149675395 cites W2149150765 @default.
- W2149675395 cites W2155741020 @default.
- W2149675395 cites W2158698691 @default.
- W2149675395 cites W2159675211 @default.
- W2149675395 cites W2172084436 @default.
- W2149675395 cites W4248107770 @default.
- W2149675395 doi "https://doi.org/10.1186/1758-2946-2-11" @default.
- W2149675395 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3004804" @default.
- W2149675395 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21143909" @default.
- W2149675395 hasPublicationYear "2010" @default.
- W2149675395 type Work @default.
- W2149675395 sameAs 2149675395 @default.
- W2149675395 citedByCount "32" @default.
- W2149675395 countsByYear W21496753952012 @default.
- W2149675395 countsByYear W21496753952013 @default.
- W2149675395 countsByYear W21496753952014 @default.
- W2149675395 countsByYear W21496753952015 @default.
- W2149675395 countsByYear W21496753952016 @default.
- W2149675395 countsByYear W21496753952017 @default.
- W2149675395 countsByYear W21496753952018 @default.
- W2149675395 countsByYear W21496753952019 @default.
- W2149675395 countsByYear W21496753952020 @default.
- W2149675395 countsByYear W21496753952021 @default.
- W2149675395 countsByYear W21496753952022 @default.
- W2149675395 crossrefType "journal-article" @default.
- W2149675395 hasAuthorship W2149675395A5026586349 @default.
- W2149675395 hasAuthorship W2149675395A5037571461 @default.
- W2149675395 hasAuthorship W2149675395A5067005872 @default.
- W2149675395 hasAuthorship W2149675395A5083958681 @default.
- W2149675395 hasBestOaLocation W21496753951 @default.
- W2149675395 hasConcept C107673813 @default.
- W2149675395 hasConcept C109316439 @default.
- W2149675395 hasConcept C119857082 @default.
- W2149675395 hasConcept C12267149 @default.
- W2149675395 hasConcept C124101348 @default.
- W2149675395 hasConcept C154945302 @default.
- W2149675395 hasConcept C177264268 @default.
- W2149675395 hasConcept C185592680 @default.
- W2149675395 hasConcept C199360897 @default.
- W2149675395 hasConcept C202751555 @default.
- W2149675395 hasConcept C33724603 @default.
- W2149675395 hasConcept C41008148 @default.
- W2149675395 hasConcept C52001869 @default.
- W2149675395 hasConcept C55493867 @default.
- W2149675395 hasConcept C58489278 @default.
- W2149675395 hasConcept C60644358 @default.
- W2149675395 hasConcept C74187038 @default.
- W2149675395 hasConcept C86803240 @default.
- W2149675395 hasConceptScore W2149675395C107673813 @default.
- W2149675395 hasConceptScore W2149675395C109316439 @default.
- W2149675395 hasConceptScore W2149675395C119857082 @default.
- W2149675395 hasConceptScore W2149675395C12267149 @default.
- W2149675395 hasConceptScore W2149675395C124101348 @default.
- W2149675395 hasConceptScore W2149675395C154945302 @default.
- W2149675395 hasConceptScore W2149675395C177264268 @default.
- W2149675395 hasConceptScore W2149675395C185592680 @default.
- W2149675395 hasConceptScore W2149675395C199360897 @default.
- W2149675395 hasConceptScore W2149675395C202751555 @default.
- W2149675395 hasConceptScore W2149675395C33724603 @default.
- W2149675395 hasConceptScore W2149675395C41008148 @default.
- W2149675395 hasConceptScore W2149675395C52001869 @default.
- W2149675395 hasConceptScore W2149675395C55493867 @default.
- W2149675395 hasConceptScore W2149675395C58489278 @default.
- W2149675395 hasConceptScore W2149675395C60644358 @default.
- W2149675395 hasConceptScore W2149675395C74187038 @default.
- W2149675395 hasConceptScore W2149675395C86803240 @default.
- W2149675395 hasIssue "1" @default.