Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149679658> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2149679658 abstract "This paper describes the use of statistics and machine learning techniques to monitor the performance of commercial aircraft operation. The purpose of this research is to develop methods that can be used to generate reliable and timely alerts so that engineers and fleet specialists become aware of abnormal situations in a large fleet of commercial aircraft that they manage. We introduce three approaches that we have used for monitoring engines and generating alerts. We also explain how additional information can be generated from machine learning experiments so that the parameters influencing the particular abnormal situation and their ranges are also identified and reported. Various benefits of fleet monitoring are explained in the paper." @default.
- W2149679658 created "2016-06-24" @default.
- W2149679658 creator A5014709314 @default.
- W2149679658 creator A5042654112 @default.
- W2149679658 date "2003-01-20" @default.
- W2149679658 modified "2023-09-22" @default.
- W2149679658 title "Monitoring of aircraft operation using statistics and machine learning" @default.
- W2149679658 cites W1602062036 @default.
- W2149679658 cites W1966743852 @default.
- W2149679658 cites W2039207944 @default.
- W2149679658 cites W2099973300 @default.
- W2149679658 cites W2138697398 @default.
- W2149679658 cites W2153248011 @default.
- W2149679658 cites W2163598528 @default.
- W2149679658 cites W2472171380 @default.
- W2149679658 cites W2029944537 @default.
- W2149679658 doi "https://doi.org/10.1109/tai.1999.809800" @default.
- W2149679658 hasPublicationYear "2003" @default.
- W2149679658 type Work @default.
- W2149679658 sameAs 2149679658 @default.
- W2149679658 citedByCount "3" @default.
- W2149679658 countsByYear W21496796582013 @default.
- W2149679658 countsByYear W21496796582014 @default.
- W2149679658 countsByYear W21496796582017 @default.
- W2149679658 crossrefType "proceedings-article" @default.
- W2149679658 hasAuthorship W2149679658A5014709314 @default.
- W2149679658 hasAuthorship W2149679658A5042654112 @default.
- W2149679658 hasBestOaLocation W21496796582 @default.
- W2149679658 hasConcept C119857082 @default.
- W2149679658 hasConcept C2777305159 @default.
- W2149679658 hasConcept C41008148 @default.
- W2149679658 hasConcept C76155785 @default.
- W2149679658 hasConceptScore W2149679658C119857082 @default.
- W2149679658 hasConceptScore W2149679658C2777305159 @default.
- W2149679658 hasConceptScore W2149679658C41008148 @default.
- W2149679658 hasConceptScore W2149679658C76155785 @default.
- W2149679658 hasLocation W21496796581 @default.
- W2149679658 hasLocation W21496796582 @default.
- W2149679658 hasOpenAccess W2149679658 @default.
- W2149679658 hasPrimaryLocation W21496796581 @default.
- W2149679658 hasRelatedWork W191348588 @default.
- W2149679658 hasRelatedWork W2007482349 @default.
- W2149679658 hasRelatedWork W2010874509 @default.
- W2149679658 hasRelatedWork W2045252540 @default.
- W2149679658 hasRelatedWork W2054078013 @default.
- W2149679658 hasRelatedWork W2058813990 @default.
- W2149679658 hasRelatedWork W2062334877 @default.
- W2149679658 hasRelatedWork W2072841450 @default.
- W2149679658 hasRelatedWork W2091461427 @default.
- W2149679658 hasRelatedWork W2115790060 @default.
- W2149679658 hasRelatedWork W2119276761 @default.
- W2149679658 hasRelatedWork W2137813111 @default.
- W2149679658 hasRelatedWork W2142560165 @default.
- W2149679658 hasRelatedWork W2566648270 @default.
- W2149679658 hasRelatedWork W2906896429 @default.
- W2149679658 hasRelatedWork W2971518682 @default.
- W2149679658 hasRelatedWork W3044005235 @default.
- W2149679658 hasRelatedWork W3105904001 @default.
- W2149679658 hasRelatedWork W570213162 @default.
- W2149679658 hasRelatedWork W73076573 @default.
- W2149679658 isParatext "false" @default.
- W2149679658 isRetracted "false" @default.
- W2149679658 magId "2149679658" @default.
- W2149679658 workType "article" @default.