Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149752167> ?p ?o ?g. }
- W2149752167 abstract "An interesting problem in proof theory is to find representations of proof that do not distinguish between proofs that are ‘morally’ the same. For many logics, the presentation of proofs in a traditional formalism, such as Gentzen’s sequent calculus, introduces artificial syntactic structure called ‘bureaucracy’; e.g., an arbitrary ordering of freely permutable inferences. A proof system that is free of bureaucracy is called canonical for a logic. In this dissertation two canonical proof systems are presented, for two logics: a notion of proof nets for additive linear logic with units, and ‘classical proof forests’, a graphical formalism for first-order classical logic. Additive linear logic (or sum–product logic) is the fragment of linear logic consisting of linear implication between formulae constructed only from atomic formulae and the additive connectives and units. Up to an equational theory over proofs, the logic describes categories in which finite products and coproducts occur freely. A notion of proof nets for additive linear logic is presented, providing canonical graphical representations of the categorical morphisms and constituting a tractable decision procedure for this equational theory. From existing proof nets for additive linear logic without units by Hughes and Van Glabbeek (modified to include the units naively), canonical proof nets are obtained by a simple graph rewriting algorithm called saturation. Main technical contributions are the substantial correctness proof of the saturation algorithm, and a correctness criterion for saturated nets. Classical proof forests are a canonical, graphical proof formalism for first-order classical logic. Related to Herbrand’s Theorem and backtracking games in the style of Coquand, the forests assign witnessing information to quantifiers in a structurally minimal way, reducing a first-order sentence to a decidable propositional one. A similar formalism ‘expansion tree proofs’ was presented by Miller, but not given a method of composition. The present treatment adds a notion of cut, and investigates the possibility of composing forests via cut-elimination. Cut-reduction steps take the form of a rewrite relation that arises from the structure of the forests in a natural way. Yet reductions are intricate, and initially not well-behaved: from perfectly ordinary cuts, reduction may reach unnaturally configured cuts that may not be reduced. Cutelimination is shown using a modified version of the rewrite relation, inspired by the game-theoretic interpretation of the forests, for which weak normalisation is shown, and strong normalisation is conjectured. In addition, by a more intricate argument, weak normalisation is also shown for the original reduction relation." @default.
- W2149752167 created "2016-06-24" @default.
- W2149752167 creator A5081519201 @default.
- W2149752167 date "2012-06-25" @default.
- W2149752167 modified "2023-09-28" @default.
- W2149752167 title "Graphical representation of canonical proof: two case studies" @default.
- W2149752167 cites W1482112913 @default.
- W2149752167 cites W1488538795 @default.
- W2149752167 cites W1492725293 @default.
- W2149752167 cites W151008459 @default.
- W2149752167 cites W1541328677 @default.
- W2149752167 cites W1542090346 @default.
- W2149752167 cites W1548491836 @default.
- W2149752167 cites W1557413548 @default.
- W2149752167 cites W1557509894 @default.
- W2149752167 cites W1573600014 @default.
- W2149752167 cites W1581917866 @default.
- W2149752167 cites W1586093680 @default.
- W2149752167 cites W1595555305 @default.
- W2149752167 cites W159715351 @default.
- W2149752167 cites W1626042158 @default.
- W2149752167 cites W1782293163 @default.
- W2149752167 cites W1795577507 @default.
- W2149752167 cites W1835137587 @default.
- W2149752167 cites W1847465957 @default.
- W2149752167 cites W1890268527 @default.
- W2149752167 cites W1910820376 @default.
- W2149752167 cites W1963733392 @default.
- W2149752167 cites W1964454590 @default.
- W2149752167 cites W1978700807 @default.
- W2149752167 cites W1984602545 @default.
- W2149752167 cites W1985185257 @default.
- W2149752167 cites W1985890955 @default.
- W2149752167 cites W1993205599 @default.
- W2149752167 cites W1995251574 @default.
- W2149752167 cites W1996605832 @default.
- W2149752167 cites W1999161312 @default.
- W2149752167 cites W2003852722 @default.
- W2149752167 cites W2005437395 @default.
- W2149752167 cites W2008920425 @default.
- W2149752167 cites W2010649834 @default.
- W2149752167 cites W2012968289 @default.
- W2149752167 cites W2015626965 @default.
- W2149752167 cites W2018773995 @default.
- W2149752167 cites W2024042018 @default.
- W2149752167 cites W2024189573 @default.
- W2149752167 cites W2025851427 @default.
- W2149752167 cites W2032033497 @default.
- W2149752167 cites W2037693339 @default.
- W2149752167 cites W2039977878 @default.
- W2149752167 cites W2047559554 @default.
- W2149752167 cites W2049362364 @default.
- W2149752167 cites W2051450758 @default.
- W2149752167 cites W2071289523 @default.
- W2149752167 cites W2075367647 @default.
- W2149752167 cites W2077585224 @default.
- W2149752167 cites W2079171825 @default.
- W2149752167 cites W2084443499 @default.
- W2149752167 cites W2086165437 @default.
- W2149752167 cites W2094685149 @default.
- W2149752167 cites W2102246643 @default.
- W2149752167 cites W2104255279 @default.
- W2149752167 cites W2106988030 @default.
- W2149752167 cites W2107067818 @default.
- W2149752167 cites W2108232891 @default.
- W2149752167 cites W2113711982 @default.
- W2149752167 cites W2120713972 @default.
- W2149752167 cites W2122253298 @default.
- W2149752167 cites W2135287414 @default.
- W2149752167 cites W2143374829 @default.
- W2149752167 cites W2146242204 @default.
- W2149752167 cites W2152013675 @default.
- W2149752167 cites W2152113165 @default.
- W2149752167 cites W2152733053 @default.
- W2149752167 cites W2156159683 @default.
- W2149752167 cites W2157558177 @default.
- W2149752167 cites W2158075895 @default.
- W2149752167 cites W2163170048 @default.
- W2149752167 cites W2164691248 @default.
- W2149752167 cites W2165446401 @default.
- W2149752167 cites W2167202795 @default.
- W2149752167 cites W2168616680 @default.
- W2149752167 cites W2168747849 @default.
- W2149752167 cites W2599664950 @default.
- W2149752167 cites W2626436722 @default.
- W2149752167 cites W2911865844 @default.
- W2149752167 cites W2912106379 @default.
- W2149752167 cites W3022746997 @default.
- W2149752167 cites W3023903997 @default.
- W2149752167 cites W3037249429 @default.
- W2149752167 cites W3043136574 @default.
- W2149752167 cites W3124444065 @default.
- W2149752167 cites W3140918176 @default.
- W2149752167 cites W654554709 @default.
- W2149752167 hasPublicationYear "2012" @default.
- W2149752167 type Work @default.
- W2149752167 sameAs 2149752167 @default.
- W2149752167 citedByCount "0" @default.
- W2149752167 crossrefType "dissertation" @default.
- W2149752167 hasAuthorship W2149752167A5081519201 @default.