Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149753941> ?p ?o ?g. }
- W2149753941 abstract "Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight, the forward motion of the helicopter in the air creates an unbalance. The airspeed is increased for the blade passing in the advancing side of the helicopter, while it is reduced in the retreating side. Moreover, when each blade enters the retreating side of the helicopter, a reverse flow occurs around the profile where the blade speed is lower than the forward speed of the helicopter. The balance of a rotorcraft is solved by a cyclic pitch control, but trade-offs are made on the blade design to cope with the great variety of aerodynamic conditions. A smart blade that would adapt its characteristics to this large set of conditions would improve rotorcrafts energy efficiency while providing vibration and noise control.Smart rotor blades systems are studied to adapt the aerodynamic characteristics of the blade during its revolution and to improve the overall performances. An increase in the lift over drag ratio on the retreating side has been studied to design a blade with better aerodynamic efficiency and better stall performances in the low-speed region. The maximum speed of a rotorcraft is limited by the angle of attack that the profile can sustain on the retreating side before stall. Therefore, increasing the maximum angle of attack that a profile geometry can sustain increases the rotorcraft flight envelope. Flow asymmetry and aerodynamic interaction between successive blades are also investigated to actively reduce vibrations and limit noise.These improvements can be achieved by deploying flaps, by using flow control devices or by morphing the full shape of the profile at a specific places during the blade revolution. Each of the listed methods has advantages and disadvantages as well as various degrees of feasibility and integrability inside helicopter blades. They all modify the aerodynamic characteristics of the profile. Their leverage on the various aerodynamic effects depends on the control strategy chosen for actuation. Harmonic actuation is therefore studied for active noise and vibration control whereas stepped deployment is foreseen to modify the stall behaviour of the retreating side of the helicopter.Helicopter blades are subjected to various force constraints such as the loads from the complex airflow and the centrifugal forces. Furthermore, any active system embedded inside a rotor blade needs to comply with the environmental constraints to which a helicopter will be subjected during its life-span. Other concerns, like the power consumption and the data transfer for blade control, play an important role as well. Finally, such a system must have a life-time exceeding the life-time of a rotor blade and meet the same criteria in toughness, reliability and ease of maintenance.Smart system is an interplay of aerodynamics, rotor-mechanics, material science and control, thus a multidisciplinary approach is essential. A large part of the work consists in building processes to integrate these domains for investigating, designing and testing smart components.Piezoelectric actuators are a promising technology to bring adaptability to rotor blades. They can be used directly on the structure to actively modify its geometry, stiffness and aerodynamic behaviour or be integrated to mechanisms for the deployment of flaps. Their large specific work, toughness, reliability and small form factor make them suitable components for integration within a rotor blade. The main disadvantage of piezoelectric actuators is the small displacement and strain available. Amplification mechanisms must be optimised to produce sufficient displacement in morphing applications.Smart actuation systems placed inside rotor blades have the potential to improve the efficiency and the performances of tomorrow's helicopters. Piezoelectric materials can address many of the challenges of integrating smart components inside helicopter blades. The key aspect remains the collaboration between various domains, skills and expertise to successfully implement these new technologies." @default.
- W2149753941 created "2016-06-24" @default.
- W2149753941 creator A5049153972 @default.
- W2149753941 creator A5077208058 @default.
- W2149753941 creator A5082177890 @default.
- W2149753941 creator A5082397518 @default.
- W2149753941 date "2012-10-17" @default.
- W2149753941 modified "2023-09-25" @default.
- W2149753941 title "Smart Actuation for Helicopter Rotorblades" @default.
- W2149753941 cites W106539155 @default.
- W2149753941 cites W196581598 @default.
- W2149753941 cites W1971047752 @default.
- W2149753941 cites W1975315799 @default.
- W2149753941 cites W1975400312 @default.
- W2149753941 cites W1975496506 @default.
- W2149753941 cites W1988481457 @default.
- W2149753941 cites W1989656888 @default.
- W2149753941 cites W2000904709 @default.
- W2149753941 cites W2004320009 @default.
- W2149753941 cites W2005136965 @default.
- W2149753941 cites W2006940520 @default.
- W2149753941 cites W2009563642 @default.
- W2149753941 cites W2014025000 @default.
- W2149753941 cites W2021049902 @default.
- W2149753941 cites W2022295378 @default.
- W2149753941 cites W2023808677 @default.
- W2149753941 cites W2025556955 @default.
- W2149753941 cites W2026503851 @default.
- W2149753941 cites W2028478877 @default.
- W2149753941 cites W2031568233 @default.
- W2149753941 cites W2034157655 @default.
- W2149753941 cites W2035867513 @default.
- W2149753941 cites W2037305891 @default.
- W2149753941 cites W2040566800 @default.
- W2149753941 cites W2040595007 @default.
- W2149753941 cites W2045169524 @default.
- W2149753941 cites W2047418053 @default.
- W2149753941 cites W2048065541 @default.
- W2149753941 cites W2051336907 @default.
- W2149753941 cites W2053045004 @default.
- W2149753941 cites W2063276132 @default.
- W2149753941 cites W2068877728 @default.
- W2149753941 cites W2073813861 @default.
- W2149753941 cites W2075908491 @default.
- W2149753941 cites W2079349308 @default.
- W2149753941 cites W2083098599 @default.
- W2149753941 cites W2086698600 @default.
- W2149753941 cites W2089124838 @default.
- W2149753941 cites W2089565627 @default.
- W2149753941 cites W2103608534 @default.
- W2149753941 cites W2107564123 @default.
- W2149753941 cites W2108196911 @default.
- W2149753941 cites W2116189283 @default.
- W2149753941 cites W2131112322 @default.
- W2149753941 cites W2135674458 @default.
- W2149753941 cites W2137702879 @default.
- W2149753941 cites W2152379991 @default.
- W2149753941 cites W2154854890 @default.
- W2149753941 cites W2322129690 @default.
- W2149753941 cites W2334406910 @default.
- W2149753941 cites W2612612232 @default.
- W2149753941 cites W2951217279 @default.
- W2149753941 cites W3152247462 @default.
- W2149753941 cites W31964628 @default.
- W2149753941 cites W655122569 @default.
- W2149753941 cites W1603294970 @default.
- W2149753941 doi "https://doi.org/10.5772/51438" @default.
- W2149753941 hasPublicationYear "2012" @default.
- W2149753941 type Work @default.
- W2149753941 sameAs 2149753941 @default.
- W2149753941 citedByCount "2" @default.
- W2149753941 countsByYear W21497539412014 @default.
- W2149753941 crossrefType "book-chapter" @default.
- W2149753941 hasAuthorship W2149753941A5049153972 @default.
- W2149753941 hasAuthorship W2149753941A5077208058 @default.
- W2149753941 hasAuthorship W2149753941A5082177890 @default.
- W2149753941 hasAuthorship W2149753941A5082397518 @default.
- W2149753941 hasBestOaLocation W21497539411 @default.
- W2149753941 hasConcept C127413603 @default.
- W2149753941 hasConcept C146978453 @default.
- W2149753941 hasConcept C178802073 @default.
- W2149753941 hasConcept C41008148 @default.
- W2149753941 hasConceptScore W2149753941C127413603 @default.
- W2149753941 hasConceptScore W2149753941C146978453 @default.
- W2149753941 hasConceptScore W2149753941C178802073 @default.
- W2149753941 hasConceptScore W2149753941C41008148 @default.
- W2149753941 hasLocation W21497539411 @default.
- W2149753941 hasLocation W21497539412 @default.
- W2149753941 hasLocation W21497539413 @default.
- W2149753941 hasOpenAccess W2149753941 @default.
- W2149753941 hasPrimaryLocation W21497539411 @default.
- W2149753941 hasRelatedWork W1440918713 @default.
- W2149753941 hasRelatedWork W2089134126 @default.
- W2149753941 hasRelatedWork W2805349488 @default.
- W2149753941 hasRelatedWork W2887130920 @default.
- W2149753941 hasRelatedWork W2899084033 @default.
- W2149753941 hasRelatedWork W2990912121 @default.
- W2149753941 hasRelatedWork W4232828791 @default.
- W2149753941 hasRelatedWork W4252062074 @default.
- W2149753941 hasRelatedWork W636359122 @default.