Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149756427> ?p ?o ?g. }
- W2149756427 endingPage "23" @default.
- W2149756427 startingPage "23" @default.
- W2149756427 abstract "Maps of disease occurrences and GIS-based models of disease transmission risk are increasingly common, and both rely on georeferenced diseases data. Automated methods for georeferencing disease data have been widely studied for developed countries with rich sources of geographic referenced data. However, the transferability of these methods to countries without comparable geographic reference data, particularly when working with historical disease data, has not been as widely studied. Historically, precise geographic information about where individual cases occur has been collected and stored verbally, identifying specific locations using place names. Georeferencing historic data is challenging however, because it is difficult to find appropriate geographic reference data to match the place names to. Here, we assess the degree of care and research invested in converting textual descriptions of disease occurrence locations to numerical grid coordinates (latitude and longitude). Specifically, we develop three datasets from the same, original monkeypox disease occurrence data, with varying levels of care and effort: the first based on an automated web-service, the second improving on the first by reference to additional maps and digital gazetteers, and the third improving still more based on extensive consultation of legacy surveillance records that provided considerable additional information about each case. To illustrate the implications of these seemingly subtle improvements in data quality, we develop ecological niche models and predictive maps of monkeypox transmission risk based on each of the three occurrence data sets.We found macrogeographic variations in ecological niche models depending on the type of georeferencing method used. Less-careful georeferencing identified much smaller areas as having potential for monkeypox transmission in the Sahel region, as well as around the rim of the Congo Basin. These results have implications for mapping efforts, as each higher level of georeferencing precision required considerably greater time investment.The importance of careful georeferencing cannot be overlooked, despite it being a time- and labor-intensive process. Investment in archival storage of primary disease-occurrence data is merited, and improved digital gazetteers are needed to support public health mapping activities, particularly in developing countries, where maps and geographic information may be sparse." @default.
- W2149756427 created "2016-06-24" @default.
- W2149756427 creator A5000928686 @default.
- W2149756427 creator A5032895526 @default.
- W2149756427 creator A5051871488 @default.
- W2149756427 creator A5054514105 @default.
- W2149756427 creator A5056611107 @default.
- W2149756427 creator A5056818325 @default.
- W2149756427 creator A5084396689 @default.
- W2149756427 date "2012-01-01" @default.
- W2149756427 modified "2023-10-09" @default.
- W2149756427 title "Effects of georeferencing effort on mapping monkeypox case distributions and transmission risk" @default.
- W2149756427 cites W1495515969 @default.
- W2149756427 cites W1554799332 @default.
- W2149756427 cites W1971666391 @default.
- W2149756427 cites W1976572437 @default.
- W2149756427 cites W1978096096 @default.
- W2149756427 cites W1996545727 @default.
- W2149756427 cites W2003014322 @default.
- W2149756427 cites W2009389340 @default.
- W2149756427 cites W2011712418 @default.
- W2149756427 cites W2022227757 @default.
- W2149756427 cites W2047027145 @default.
- W2149756427 cites W2050888782 @default.
- W2149756427 cites W2059285111 @default.
- W2149756427 cites W2069096418 @default.
- W2149756427 cites W2078248503 @default.
- W2149756427 cites W2087649160 @default.
- W2149756427 cites W2111963094 @default.
- W2149756427 cites W2112776483 @default.
- W2149756427 cites W2114757769 @default.
- W2149756427 cites W2123755352 @default.
- W2149756427 cites W2127435093 @default.
- W2149756427 cites W2128002149 @default.
- W2149756427 cites W2129634129 @default.
- W2149756427 cites W2129895557 @default.
- W2149756427 cites W2141793196 @default.
- W2149756427 cites W2145983103 @default.
- W2149756427 cites W2148045713 @default.
- W2149756427 cites W2160498394 @default.
- W2149756427 cites W2166372409 @default.
- W2149756427 cites W2168127024 @default.
- W2149756427 doi "https://doi.org/10.1186/1476-072x-11-23" @default.
- W2149756427 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3724478" @default.
- W2149756427 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22738820" @default.
- W2149756427 hasPublicationYear "2012" @default.
- W2149756427 type Work @default.
- W2149756427 sameAs 2149756427 @default.
- W2149756427 citedByCount "25" @default.
- W2149756427 countsByYear W21497564272013 @default.
- W2149756427 countsByYear W21497564272014 @default.
- W2149756427 countsByYear W21497564272015 @default.
- W2149756427 countsByYear W21497564272016 @default.
- W2149756427 countsByYear W21497564272017 @default.
- W2149756427 countsByYear W21497564272018 @default.
- W2149756427 countsByYear W21497564272020 @default.
- W2149756427 countsByYear W21497564272021 @default.
- W2149756427 countsByYear W21497564272022 @default.
- W2149756427 countsByYear W21497564272023 @default.
- W2149756427 crossrefType "journal-article" @default.
- W2149756427 hasAuthorship W2149756427A5000928686 @default.
- W2149756427 hasAuthorship W2149756427A5032895526 @default.
- W2149756427 hasAuthorship W2149756427A5051871488 @default.
- W2149756427 hasAuthorship W2149756427A5054514105 @default.
- W2149756427 hasAuthorship W2149756427A5056611107 @default.
- W2149756427 hasAuthorship W2149756427A5056818325 @default.
- W2149756427 hasAuthorship W2149756427A5084396689 @default.
- W2149756427 hasBestOaLocation W21497564271 @default.
- W2149756427 hasConcept C100970517 @default.
- W2149756427 hasConcept C123046963 @default.
- W2149756427 hasConcept C124101348 @default.
- W2149756427 hasConcept C138816342 @default.
- W2149756427 hasConcept C159110408 @default.
- W2149756427 hasConcept C159620131 @default.
- W2149756427 hasConcept C185618831 @default.
- W2149756427 hasConcept C193395930 @default.
- W2149756427 hasConcept C201780435 @default.
- W2149756427 hasConcept C205649164 @default.
- W2149756427 hasConcept C2522767166 @default.
- W2149756427 hasConcept C41008148 @default.
- W2149756427 hasConcept C41856607 @default.
- W2149756427 hasConcept C58640448 @default.
- W2149756427 hasConcept C62649853 @default.
- W2149756427 hasConcept C71924100 @default.
- W2149756427 hasConcept C75145180 @default.
- W2149756427 hasConcept C9770341 @default.
- W2149756427 hasConceptScore W2149756427C100970517 @default.
- W2149756427 hasConceptScore W2149756427C123046963 @default.
- W2149756427 hasConceptScore W2149756427C124101348 @default.
- W2149756427 hasConceptScore W2149756427C138816342 @default.
- W2149756427 hasConceptScore W2149756427C159110408 @default.
- W2149756427 hasConceptScore W2149756427C159620131 @default.
- W2149756427 hasConceptScore W2149756427C185618831 @default.
- W2149756427 hasConceptScore W2149756427C193395930 @default.
- W2149756427 hasConceptScore W2149756427C201780435 @default.
- W2149756427 hasConceptScore W2149756427C205649164 @default.
- W2149756427 hasConceptScore W2149756427C2522767166 @default.
- W2149756427 hasConceptScore W2149756427C41008148 @default.