Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149759818> ?p ?o ?g. }
- W2149759818 endingPage "1128" @default.
- W2149759818 startingPage "1100" @default.
- W2149759818 abstract "The infrared domain is very attractive for many applications owing to two unique features: (i) it contains several atmospheric transparency windows, (ii) it corresponds to the ‘molecular fingerprint’ region of the electromagnetic spectrum where various molecules have strong rovibrational absorption lines. In many cases, these applications (e.g. laser surgery, trace gas monitoring, remote sensing, nonlinear spectroscopy, countermeasures, …) require coherent light radiation as the one emitted by a laser source. In this context, the choice of the proper technology is a key issue. Depending on the selected application, it could be required the source to deliver tunable emission, narrow linewidth, nearly diffraction limited beam, pulsed or continuous-wave (CW) radiation, etc. This article briefly reviews the main technologies, restricted to CW and nanosecond pulsed sources emitting in the 2–12 μm range. The technologies considered include rare-earth and transition-metal doped bulk and fiber lasers, semiconductor lasers, and optical parametric sources. Pros and cons of these technologies are then briefly discussed in the context of several selected applications. To cite this article: A. Godard, C. R. Physique 8 (2007). Le domaine infrarouge est très intéressant pour de nombreuses applications grâce à deux caractéristiques particulières : (i) il contient plusieurs fenêtres de transmission de l'atmosphère, (ii) il correspond à la région ‘d'empreintes digitales’ du spectre électromagnétique où de nombreuses molécules présentent de fortes raies rovibrationnelles d'absorption. Dans de nombreux cas, ces applications (telles que la chirurgie laser, l'analyse de gaz, la détection à distance, la spectrocopie non linéaire, les contre-mesures) nécessitent de disposer de rayonnement cohérent tel que celui émis par une source laser. Dans ce contexte, le choix de la bonne filière est un paramètre clef. En fonction de l'application sélectionnée, il peut être requis que la source délivre un rayonnement accordable, une faible largeur de raie, un faisceau proche de la limite de diffraction, une émission continue ou impulsionnelle, etc. Cet article passe brièvement en revue les principales technologies, restreintes aux sources continues ou impulsionnelles nanoseconde émettant dans l'intervalle 2–12 μm. Les filières technologiques considérées incluent les lasers solide et fibre dopés aux ions terre-rare ou métal de transition, les lasers semi-conducteurs et les sources paramétriques optiques. Les avantages et les inconvénients de ces technologies sont ensuite discutés rapidement dans le contexte de quelques applications sélectionnées. Pour citer cet article : A. Godard, C. R. Physique 8 (2007)." @default.
- W2149759818 created "2016-06-24" @default.
- W2149759818 creator A5075614165 @default.
- W2149759818 date "2007-12-01" @default.
- W2149759818 modified "2023-10-14" @default.
- W2149759818 title "Infrared (2–12 μm) solid-state laser sources: a review" @default.
- W2149759818 cites W1534453082 @default.
- W2149759818 cites W156039706 @default.
- W2149759818 cites W1571211262 @default.
- W2149759818 cites W1686248156 @default.
- W2149759818 cites W1853456146 @default.
- W2149759818 cites W1965438115 @default.
- W2149759818 cites W1968375084 @default.
- W2149759818 cites W1970263218 @default.
- W2149759818 cites W1974456428 @default.
- W2149759818 cites W1984198332 @default.
- W2149759818 cites W1987420601 @default.
- W2149759818 cites W1988105444 @default.
- W2149759818 cites W1988885346 @default.
- W2149759818 cites W1995747597 @default.
- W2149759818 cites W2000464251 @default.
- W2149759818 cites W2001844835 @default.
- W2149759818 cites W2004138160 @default.
- W2149759818 cites W2009039399 @default.
- W2149759818 cites W2009225168 @default.
- W2149759818 cites W2012246045 @default.
- W2149759818 cites W2014361004 @default.
- W2149759818 cites W2015673204 @default.
- W2149759818 cites W2016575625 @default.
- W2149759818 cites W2016842784 @default.
- W2149759818 cites W2020324585 @default.
- W2149759818 cites W2020581049 @default.
- W2149759818 cites W2022971790 @default.
- W2149759818 cites W2026199742 @default.
- W2149759818 cites W2029176498 @default.
- W2149759818 cites W2029685450 @default.
- W2149759818 cites W2037445218 @default.
- W2149759818 cites W2039233533 @default.
- W2149759818 cites W2040907885 @default.
- W2149759818 cites W2041179176 @default.
- W2149759818 cites W2046238804 @default.
- W2149759818 cites W2047728776 @default.
- W2149759818 cites W2049646227 @default.
- W2149759818 cites W2050230809 @default.
- W2149759818 cites W2052033534 @default.
- W2149759818 cites W2052415808 @default.
- W2149759818 cites W2052951210 @default.
- W2149759818 cites W2053727460 @default.
- W2149759818 cites W2054540944 @default.
- W2149759818 cites W2055238718 @default.
- W2149759818 cites W2056293287 @default.
- W2149759818 cites W2057420213 @default.
- W2149759818 cites W2060885730 @default.
- W2149759818 cites W2061076520 @default.
- W2149759818 cites W2062213189 @default.
- W2149759818 cites W2065325139 @default.
- W2149759818 cites W2065680434 @default.
- W2149759818 cites W2071469974 @default.
- W2149759818 cites W2072192554 @default.
- W2149759818 cites W2080470181 @default.
- W2149759818 cites W2082990657 @default.
- W2149759818 cites W2086101764 @default.
- W2149759818 cites W2090371918 @default.
- W2149759818 cites W2099217726 @default.
- W2149759818 cites W2099911507 @default.
- W2149759818 cites W2100144668 @default.
- W2149759818 cites W2101516666 @default.
- W2149759818 cites W2102395441 @default.
- W2149759818 cites W2116926621 @default.
- W2149759818 cites W2117396511 @default.
- W2149759818 cites W2119880276 @default.
- W2149759818 cites W2125689356 @default.
- W2149759818 cites W2129782131 @default.
- W2149759818 cites W2139229843 @default.
- W2149759818 cites W2142432221 @default.
- W2149759818 cites W2145033728 @default.
- W2149759818 cites W2146079194 @default.
- W2149759818 cites W2146472219 @default.
- W2149759818 cites W2154782468 @default.
- W2149759818 cites W2159161589 @default.
- W2149759818 cites W2160200675 @default.
- W2149759818 cites W2164698645 @default.
- W2149759818 cites W2249451425 @default.
- W2149759818 cites W2284413813 @default.
- W2149759818 cites W3161981754 @default.
- W2149759818 doi "https://doi.org/10.1016/j.crhy.2007.09.010" @default.
- W2149759818 hasPublicationYear "2007" @default.
- W2149759818 type Work @default.
- W2149759818 sameAs 2149759818 @default.
- W2149759818 citedByCount "359" @default.
- W2149759818 countsByYear W21497598182012 @default.
- W2149759818 countsByYear W21497598182013 @default.
- W2149759818 countsByYear W21497598182014 @default.
- W2149759818 countsByYear W21497598182015 @default.
- W2149759818 countsByYear W21497598182016 @default.
- W2149759818 countsByYear W21497598182017 @default.
- W2149759818 countsByYear W21497598182018 @default.
- W2149759818 countsByYear W21497598182019 @default.