Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149776317> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2149776317 endingPage "113" @default.
- W2149776317 startingPage "100" @default.
- W2149776317 abstract "One important problem in genomic research is to identify genomic features such as gene expression data or DNA single nucleotide polymorphisms (SNPs) that are related to clinical phenotypes. Often these genomic data can be naturally divided into biologically meaningful groups such as genes belonging to the same pathways or SNPs within genes. In this paper, we propose group additive regression models and a group gradient descent boosting procedure for identifying groups of genomic features that are related to clinical phenotypes. Our simulation results show that by dividing the variables into appropriate groups, we can obtain better identification of the group features that are related to the phenotypes. In addition, the prediction mean square errors are also smaller than the component-wise boosting procedure. We demonstrate the application of the methods to pathway-based analysis of microarray gene expression data of breast cancer. Results from analysis of a breast cancer microarray gene expression data set indicate that the pathways of metalloendopeptidases (MMPs) and MMP inhibitors, as well as cell proliferation, cell growth, and maintenance are important to breast cancer-specific survival." @default.
- W2149776317 created "2016-06-24" @default.
- W2149776317 creator A5011239592 @default.
- W2149776317 creator A5082318113 @default.
- W2149776317 date "2007-05-18" @default.
- W2149776317 modified "2023-09-26" @default.
- W2149776317 title "Group additive regression models for genomic data analysis" @default.
- W2149776317 cites W1607267312 @default.
- W2149776317 cites W1994130453 @default.
- W2149776317 cites W2022518765 @default.
- W2149776317 cites W2068176536 @default.
- W2149776317 cites W2097664282 @default.
- W2149776317 cites W2098421151 @default.
- W2149776317 cites W2099620796 @default.
- W2149776317 cites W2103017472 @default.
- W2149776317 cites W2109785413 @default.
- W2149776317 cites W2138019504 @default.
- W2149776317 cites W2952563653 @default.
- W2149776317 cites W4246259708 @default.
- W2149776317 cites W4249977334 @default.
- W2149776317 doi "https://doi.org/10.1093/biostatistics/kxm015" @default.
- W2149776317 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17513311" @default.
- W2149776317 hasPublicationYear "2007" @default.
- W2149776317 type Work @default.
- W2149776317 sameAs 2149776317 @default.
- W2149776317 citedByCount "44" @default.
- W2149776317 countsByYear W21497763172012 @default.
- W2149776317 countsByYear W21497763172013 @default.
- W2149776317 countsByYear W21497763172014 @default.
- W2149776317 countsByYear W21497763172015 @default.
- W2149776317 countsByYear W21497763172016 @default.
- W2149776317 countsByYear W21497763172017 @default.
- W2149776317 countsByYear W21497763172018 @default.
- W2149776317 countsByYear W21497763172019 @default.
- W2149776317 countsByYear W21497763172020 @default.
- W2149776317 countsByYear W21497763172021 @default.
- W2149776317 countsByYear W21497763172022 @default.
- W2149776317 countsByYear W21497763172023 @default.
- W2149776317 crossrefType "journal-article" @default.
- W2149776317 hasAuthorship W2149776317A5011239592 @default.
- W2149776317 hasAuthorship W2149776317A5082318113 @default.
- W2149776317 hasBestOaLocation W21497763171 @default.
- W2149776317 hasConcept C104317684 @default.
- W2149776317 hasConcept C105795698 @default.
- W2149776317 hasConcept C121608353 @default.
- W2149776317 hasConcept C135763542 @default.
- W2149776317 hasConcept C150194340 @default.
- W2149776317 hasConcept C153209595 @default.
- W2149776317 hasConcept C193244246 @default.
- W2149776317 hasConcept C33923547 @default.
- W2149776317 hasConcept C530470458 @default.
- W2149776317 hasConcept C54355233 @default.
- W2149776317 hasConcept C60644358 @default.
- W2149776317 hasConcept C70721500 @default.
- W2149776317 hasConcept C83546350 @default.
- W2149776317 hasConcept C8415881 @default.
- W2149776317 hasConcept C86803240 @default.
- W2149776317 hasConceptScore W2149776317C104317684 @default.
- W2149776317 hasConceptScore W2149776317C105795698 @default.
- W2149776317 hasConceptScore W2149776317C121608353 @default.
- W2149776317 hasConceptScore W2149776317C135763542 @default.
- W2149776317 hasConceptScore W2149776317C150194340 @default.
- W2149776317 hasConceptScore W2149776317C153209595 @default.
- W2149776317 hasConceptScore W2149776317C193244246 @default.
- W2149776317 hasConceptScore W2149776317C33923547 @default.
- W2149776317 hasConceptScore W2149776317C530470458 @default.
- W2149776317 hasConceptScore W2149776317C54355233 @default.
- W2149776317 hasConceptScore W2149776317C60644358 @default.
- W2149776317 hasConceptScore W2149776317C70721500 @default.
- W2149776317 hasConceptScore W2149776317C83546350 @default.
- W2149776317 hasConceptScore W2149776317C8415881 @default.
- W2149776317 hasConceptScore W2149776317C86803240 @default.
- W2149776317 hasIssue "1" @default.
- W2149776317 hasLocation W21497763171 @default.
- W2149776317 hasLocation W21497763172 @default.
- W2149776317 hasLocation W21497763173 @default.
- W2149776317 hasOpenAccess W2149776317 @default.
- W2149776317 hasPrimaryLocation W21497763171 @default.
- W2149776317 hasRelatedWork W1991523530 @default.
- W2149776317 hasRelatedWork W2002128513 @default.
- W2149776317 hasRelatedWork W2009966535 @default.
- W2149776317 hasRelatedWork W2020824267 @default.
- W2149776317 hasRelatedWork W2031436818 @default.
- W2149776317 hasRelatedWork W2057739827 @default.
- W2149776317 hasRelatedWork W2075354549 @default.
- W2149776317 hasRelatedWork W2088063203 @default.
- W2149776317 hasRelatedWork W2171277769 @default.
- W2149776317 hasRelatedWork W2092874662 @default.
- W2149776317 hasVolume "9" @default.
- W2149776317 isParatext "false" @default.
- W2149776317 isRetracted "false" @default.
- W2149776317 magId "2149776317" @default.
- W2149776317 workType "article" @default.