Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149806498> ?p ?o ?g. }
- W2149806498 endingPage "479" @default.
- W2149806498 startingPage "466" @default.
- W2149806498 abstract "One of the major challenges in wireless sensor network (WSN) research is to curb down congestion in the network's traffic, without compromising with the energy of the sensor nodes. Congestion affects the continuous flow of data, loss of information, delay in the arrival of data to the destination and unwanted consumption of significant amount of the very limited amount of energy in the nodes. Obviously, in healthcare WSN applications, particularly in the ones that cater to medical emergencies or in the ones that closely monitor critically ailing patients, it is desirable in the first place to avoid congestion from occurring and even if it occurs, to reduce the loss of data due to congestion. In this work, we address the problem of congestion in the nodes of healthcare WSN using a learning automata (LA)-based approach. Our primary objective in using this approach is to adaptively make the processing rate (data packet arrival rate) in the nodes equal to the transmitting rate (packet service rate), so that the occurrence of congestion in the nodes is seamlessly avoided. We maintain that the proposed algorithm, named as learning automata-based congestion avoidance algorithm in sensor networks (LACAS), can counter the congestion problem in healthcare WSNs effectively. An important feature of LACAS is that it intelligently' learns' from the past and improves its performance significantly as time progresses. Our proposed LA based model was evaluated using simulations representing healthcare WSNs. The results obtained through the experiments with respect to performance criteria having important implications in the healthcare domain, for example, the number of collisions, the energy consumption at the nodes, the network throughput, the number of unicast packets delivered, the number of packets delivered to each node, the signals received and forwarded to the medium access control (MAC) layer, and the change in energy consumption with variation in transmission range, have shown that the proposed algorithm is capable of successfully avoiding congestion in typical healthcare WSNs requiring a reliable congestion control mechanism." @default.
- W2149806498 created "2016-06-24" @default.
- W2149806498 creator A5031521484 @default.
- W2149806498 creator A5032787307 @default.
- W2149806498 creator A5051195514 @default.
- W2149806498 date "2009-05-01" @default.
- W2149806498 modified "2023-09-27" @default.
- W2149806498 title "Lacas: learning automata-based congestion avoidance scheme for healthcare wireless sensor networks" @default.
- W2149806498 cites W1507233823 @default.
- W2149806498 cites W1967178397 @default.
- W2149806498 cites W1978258815 @default.
- W2149806498 cites W2000234133 @default.
- W2149806498 cites W2010333492 @default.
- W2149806498 cites W2023007396 @default.
- W2149806498 cites W2030315897 @default.
- W2149806498 cites W2059553088 @default.
- W2149806498 cites W2097152435 @default.
- W2149806498 cites W2106459665 @default.
- W2149806498 cites W2107530048 @default.
- W2149806498 cites W2108063157 @default.
- W2149806498 cites W2108714110 @default.
- W2149806498 cites W2109371280 @default.
- W2149806498 cites W2130463867 @default.
- W2149806498 cites W2136086557 @default.
- W2149806498 cites W2138933282 @default.
- W2149806498 cites W2148761409 @default.
- W2149806498 cites W2150365829 @default.
- W2149806498 cites W2152324445 @default.
- W2149806498 cites W2153905331 @default.
- W2149806498 cites W2164636053 @default.
- W2149806498 doi "https://doi.org/10.1109/jsac.2009.090510" @default.
- W2149806498 hasPublicationYear "2009" @default.
- W2149806498 type Work @default.
- W2149806498 sameAs 2149806498 @default.
- W2149806498 citedByCount "177" @default.
- W2149806498 countsByYear W21498064982012 @default.
- W2149806498 countsByYear W21498064982013 @default.
- W2149806498 countsByYear W21498064982014 @default.
- W2149806498 countsByYear W21498064982015 @default.
- W2149806498 countsByYear W21498064982016 @default.
- W2149806498 countsByYear W21498064982017 @default.
- W2149806498 countsByYear W21498064982018 @default.
- W2149806498 countsByYear W21498064982019 @default.
- W2149806498 countsByYear W21498064982020 @default.
- W2149806498 countsByYear W21498064982021 @default.
- W2149806498 countsByYear W21498064982022 @default.
- W2149806498 countsByYear W21498064982023 @default.
- W2149806498 crossrefType "journal-article" @default.
- W2149806498 hasAuthorship W2149806498A5031521484 @default.
- W2149806498 hasAuthorship W2149806498A5032787307 @default.
- W2149806498 hasAuthorship W2149806498A5051195514 @default.
- W2149806498 hasConcept C112505250 @default.
- W2149806498 hasConcept C120314980 @default.
- W2149806498 hasConcept C127413603 @default.
- W2149806498 hasConcept C154945302 @default.
- W2149806498 hasConcept C158379750 @default.
- W2149806498 hasConcept C18903297 @default.
- W2149806498 hasConcept C195563490 @default.
- W2149806498 hasConcept C22212356 @default.
- W2149806498 hasConcept C24590314 @default.
- W2149806498 hasConcept C2776807809 @default.
- W2149806498 hasConcept C2779888511 @default.
- W2149806498 hasConcept C2780165032 @default.
- W2149806498 hasConcept C31258907 @default.
- W2149806498 hasConcept C41008148 @default.
- W2149806498 hasConcept C54108766 @default.
- W2149806498 hasConcept C79403827 @default.
- W2149806498 hasConcept C86803240 @default.
- W2149806498 hasConceptScore W2149806498C112505250 @default.
- W2149806498 hasConceptScore W2149806498C120314980 @default.
- W2149806498 hasConceptScore W2149806498C127413603 @default.
- W2149806498 hasConceptScore W2149806498C154945302 @default.
- W2149806498 hasConceptScore W2149806498C158379750 @default.
- W2149806498 hasConceptScore W2149806498C18903297 @default.
- W2149806498 hasConceptScore W2149806498C195563490 @default.
- W2149806498 hasConceptScore W2149806498C22212356 @default.
- W2149806498 hasConceptScore W2149806498C24590314 @default.
- W2149806498 hasConceptScore W2149806498C2776807809 @default.
- W2149806498 hasConceptScore W2149806498C2779888511 @default.
- W2149806498 hasConceptScore W2149806498C2780165032 @default.
- W2149806498 hasConceptScore W2149806498C31258907 @default.
- W2149806498 hasConceptScore W2149806498C41008148 @default.
- W2149806498 hasConceptScore W2149806498C54108766 @default.
- W2149806498 hasConceptScore W2149806498C79403827 @default.
- W2149806498 hasConceptScore W2149806498C86803240 @default.
- W2149806498 hasIssue "4" @default.
- W2149806498 hasLocation W21498064981 @default.
- W2149806498 hasOpenAccess W2149806498 @default.
- W2149806498 hasPrimaryLocation W21498064981 @default.
- W2149806498 hasRelatedWork W1975718158 @default.
- W2149806498 hasRelatedWork W2006518659 @default.
- W2149806498 hasRelatedWork W2037042686 @default.
- W2149806498 hasRelatedWork W2078600672 @default.
- W2149806498 hasRelatedWork W2124572611 @default.
- W2149806498 hasRelatedWork W2147421036 @default.
- W2149806498 hasRelatedWork W2169420408 @default.
- W2149806498 hasRelatedWork W2533451858 @default.
- W2149806498 hasRelatedWork W3015059975 @default.