Matches in SemOpenAlex for { <https://semopenalex.org/work/W2149901467> ?p ?o ?g. }
- W2149901467 abstract "In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with supervised pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical information about the metabolic state of tumours and can be performed at short (< 45 ms) or long (> 45 ms) echo time (TE), each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate. Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the information provided by both TE should be of use for clinical purposes. In this study, we characterise the performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the best performing NMF method for source separation, we compare its accuracy for class assignment when using the mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR). For this, we used SV 1H-MRS data with positive and negative peaks, from a widely tested SV 1H-MRS human brain tumour database.The results reported in this paper reveal the advantage of using a recently described variant of NMF, namely Convex-NMF, as an unsupervised method of source extraction from SV1H-MRS. Most of the sources extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using Convex-NMF as a DR step previous to standard supervised classification. The obtained results are comparable to, or more accurate than those obtained with supervised techniques.The unsupervised properties of Convex-NMF place this approach one step ahead of classical label-requiring supervised methods for the discrimination of brain tumour types, as it accounts for their increasingly recognised molecular subtype heterogeneity. The application of Convex-NMF in computer assisted decision support systems is expected to facilitate further improvements in the uptake of MRS-derived information by clinicians." @default.
- W2149901467 created "2016-06-24" @default.
- W2149901467 creator A5004256128 @default.
- W2149901467 creator A5010155676 @default.
- W2149901467 creator A5068194631 @default.
- W2149901467 creator A5069425032 @default.
- W2149901467 creator A5077858988 @default.
- W2149901467 date "2012-03-08" @default.
- W2149901467 modified "2023-10-09" @default.
- W2149901467 title "Non-negative matrix factorisation methods for the spectral decomposition of MRS data from human brain tumours" @default.
- W2149901467 cites W1554272445 @default.
- W2149901467 cites W1834526849 @default.
- W2149901467 cites W1902027874 @default.
- W2149901467 cites W1963858079 @default.
- W2149901467 cites W1964339879 @default.
- W2149901467 cites W1964900038 @default.
- W2149901467 cites W1965648329 @default.
- W2149901467 cites W1966954198 @default.
- W2149901467 cites W1975827861 @default.
- W2149901467 cites W2017135228 @default.
- W2149901467 cites W2024089294 @default.
- W2149901467 cites W2030576205 @default.
- W2149901467 cites W2038979894 @default.
- W2149901467 cites W2046796218 @default.
- W2149901467 cites W2048992185 @default.
- W2149901467 cites W2050344398 @default.
- W2149901467 cites W2056020841 @default.
- W2149901467 cites W2059745395 @default.
- W2149901467 cites W2074713614 @default.
- W2149901467 cites W2076495799 @default.
- W2149901467 cites W2084681095 @default.
- W2149901467 cites W2089305000 @default.
- W2149901467 cites W2110096996 @default.
- W2149901467 cites W2116794895 @default.
- W2149901467 cites W2119000874 @default.
- W2149901467 cites W2121800619 @default.
- W2149901467 cites W2126768332 @default.
- W2149901467 cites W2132406881 @default.
- W2149901467 cites W2133811548 @default.
- W2149901467 cites W2135783103 @default.
- W2149901467 cites W2136637647 @default.
- W2149901467 cites W2141224535 @default.
- W2149901467 cites W2144769789 @default.
- W2149901467 cites W2148011138 @default.
- W2149901467 cites W2151879381 @default.
- W2149901467 cites W2160382843 @default.
- W2149901467 cites W2160609428 @default.
- W2149901467 cites W2168017623 @default.
- W2149901467 cites W2168103112 @default.
- W2149901467 cites W2170143246 @default.
- W2149901467 doi "https://doi.org/10.1186/1471-2105-13-38" @default.
- W2149901467 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3364901" @default.
- W2149901467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22401579" @default.
- W2149901467 hasPublicationYear "2012" @default.
- W2149901467 type Work @default.
- W2149901467 sameAs 2149901467 @default.
- W2149901467 citedByCount "26" @default.
- W2149901467 countsByYear W21499014672012 @default.
- W2149901467 countsByYear W21499014672014 @default.
- W2149901467 countsByYear W21499014672015 @default.
- W2149901467 countsByYear W21499014672016 @default.
- W2149901467 countsByYear W21499014672017 @default.
- W2149901467 countsByYear W21499014672018 @default.
- W2149901467 countsByYear W21499014672019 @default.
- W2149901467 countsByYear W21499014672020 @default.
- W2149901467 countsByYear W21499014672022 @default.
- W2149901467 countsByYear W21499014672023 @default.
- W2149901467 crossrefType "journal-article" @default.
- W2149901467 hasAuthorship W2149901467A5004256128 @default.
- W2149901467 hasAuthorship W2149901467A5010155676 @default.
- W2149901467 hasAuthorship W2149901467A5068194631 @default.
- W2149901467 hasAuthorship W2149901467A5069425032 @default.
- W2149901467 hasAuthorship W2149901467A5077858988 @default.
- W2149901467 hasBestOaLocation W21499014671 @default.
- W2149901467 hasConcept C106487976 @default.
- W2149901467 hasConcept C121332964 @default.
- W2149901467 hasConcept C152671427 @default.
- W2149901467 hasConcept C153180895 @default.
- W2149901467 hasConcept C154945302 @default.
- W2149901467 hasConcept C158693339 @default.
- W2149901467 hasConcept C185592680 @default.
- W2149901467 hasConcept C41008148 @default.
- W2149901467 hasConcept C42355184 @default.
- W2149901467 hasConcept C43617362 @default.
- W2149901467 hasConcept C46141821 @default.
- W2149901467 hasConcept C54170458 @default.
- W2149901467 hasConcept C62520636 @default.
- W2149901467 hasConcept C70721500 @default.
- W2149901467 hasConcept C86803240 @default.
- W2149901467 hasConceptScore W2149901467C106487976 @default.
- W2149901467 hasConceptScore W2149901467C121332964 @default.
- W2149901467 hasConceptScore W2149901467C152671427 @default.
- W2149901467 hasConceptScore W2149901467C153180895 @default.
- W2149901467 hasConceptScore W2149901467C154945302 @default.
- W2149901467 hasConceptScore W2149901467C158693339 @default.
- W2149901467 hasConceptScore W2149901467C185592680 @default.
- W2149901467 hasConceptScore W2149901467C41008148 @default.
- W2149901467 hasConceptScore W2149901467C42355184 @default.
- W2149901467 hasConceptScore W2149901467C43617362 @default.
- W2149901467 hasConceptScore W2149901467C46141821 @default.