Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150334081> ?p ?o ?g. }
- W2150334081 abstract "The wide use of high-throughput DNA microarray technology provide an increasingly detailed view of human transcriptome from hundreds to thousands of genes. Although biomedical researchers typically design microarray experiments to explore specific biological contexts, the relationships between genes are hard to identified because they are complex and noisy high-dimensional data and are often hindered by low statistical power. The main challenge now is to extract valuable biological information from the colossal amount of data to gain insight into biological processes and the mechanisms of human disease. To overcome the challenge requires mathematical and computational methods that are versatile enough to capture the underlying biological features and simple enough to be applied efficiently to large datasets.Unsupervised machine learning approaches provide new and efficient analysis of gene expression profiles. In our study, two unsupervised knowledge-based matrix factorization methods, independent component analysis (ICA) and nonnegative matrix factorization (NMF) are integrated to identify significant genes and related pathways in microarray gene expression dataset of Alzheimer's disease. The advantage of these two approaches is they can be performed as a biclustering method by which genes and conditions can be clustered simultaneously. Furthermore, they can group genes into different categories for identifying related diagnostic pathways and regulatory networks. The difference between these two method lies in ICA assume statistical independence of the expression modes, while NMF need positivity constrains to generate localized gene expression profiles.In our work, we performed FastICA and non-smooth NMF methods on DNA microarray gene expression data of Alzheimer's disease respectively. The simulation results shows that both of the methods can clearly classify severe AD samples from control samples, and the biological analysis of the identified significant genes and their related pathways demonstrated that these genes play a prominent role in AD and relate the activation patterns to AD phenotypes. It is validated that the combination of these two methods is efficient.Unsupervised matrix factorization methods provide efficient tools to analyze high-throughput microarray dataset. According to the facts that different unsupervised approaches explore correlations in the high-dimensional data space and identify relevant subspace base on different hypotheses, integrating these methods to explore the underlying biological information from microarray dataset is an efficient approach. By combining the significant genes identified by both ICA and NMF, the biological analysis shows great efficient for elucidating the molecular taxonomy of Alzheimer's disease and enable better experimental design to further identify potential pathways and therapeutic targets of AD." @default.
- W2150334081 created "2016-06-24" @default.
- W2150334081 creator A5001837630 @default.
- W2150334081 creator A5025167129 @default.
- W2150334081 creator A5033784234 @default.
- W2150334081 date "2011-07-27" @default.
- W2150334081 modified "2023-10-09" @default.
- W2150334081 title "Exploring matrix factorization techniques for significant genes identification of Alzheimer’s disease microarray gene expression data" @default.
- W2150334081 cites W1579517727 @default.
- W2150334081 cites W1902027874 @default.
- W2150334081 cites W1991973126 @default.
- W2150334081 cites W2019502123 @default.
- W2150334081 cites W2023416945 @default.
- W2150334081 cites W2037562549 @default.
- W2150334081 cites W2066543052 @default.
- W2150334081 cites W2071067135 @default.
- W2150334081 cites W2114729479 @default.
- W2150334081 cites W2132977458 @default.
- W2150334081 cites W2135667059 @default.
- W2150334081 cites W2146913572 @default.
- W2150334081 cites W2153073444 @default.
- W2150334081 cites W2155120241 @default.
- W2150334081 cites W2155386706 @default.
- W2150334081 cites W2171671940 @default.
- W2150334081 doi "https://doi.org/10.1186/1471-2105-12-s5-s7" @default.
- W2150334081 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3203370" @default.
- W2150334081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21989140" @default.
- W2150334081 hasPublicationYear "2011" @default.
- W2150334081 type Work @default.
- W2150334081 sameAs 2150334081 @default.
- W2150334081 citedByCount "22" @default.
- W2150334081 countsByYear W21503340812012 @default.
- W2150334081 countsByYear W21503340812013 @default.
- W2150334081 countsByYear W21503340812014 @default.
- W2150334081 countsByYear W21503340812015 @default.
- W2150334081 countsByYear W21503340812016 @default.
- W2150334081 countsByYear W21503340812017 @default.
- W2150334081 countsByYear W21503340812018 @default.
- W2150334081 countsByYear W21503340812019 @default.
- W2150334081 countsByYear W21503340812020 @default.
- W2150334081 countsByYear W21503340812021 @default.
- W2150334081 countsByYear W21503340812022 @default.
- W2150334081 crossrefType "journal-article" @default.
- W2150334081 hasAuthorship W2150334081A5001837630 @default.
- W2150334081 hasAuthorship W2150334081A5025167129 @default.
- W2150334081 hasAuthorship W2150334081A5033784234 @default.
- W2150334081 hasBestOaLocation W21503340811 @default.
- W2150334081 hasConcept C104317684 @default.
- W2150334081 hasConcept C116834253 @default.
- W2150334081 hasConcept C121332964 @default.
- W2150334081 hasConcept C124101348 @default.
- W2150334081 hasConcept C144817290 @default.
- W2150334081 hasConcept C150194340 @default.
- W2150334081 hasConcept C152671427 @default.
- W2150334081 hasConcept C154945302 @default.
- W2150334081 hasConcept C158693339 @default.
- W2150334081 hasConcept C201797286 @default.
- W2150334081 hasConcept C33704608 @default.
- W2150334081 hasConcept C41008148 @default.
- W2150334081 hasConcept C42355184 @default.
- W2150334081 hasConcept C51432778 @default.
- W2150334081 hasConcept C54355233 @default.
- W2150334081 hasConcept C59822182 @default.
- W2150334081 hasConcept C60644358 @default.
- W2150334081 hasConcept C62520636 @default.
- W2150334081 hasConcept C70721500 @default.
- W2150334081 hasConcept C73555534 @default.
- W2150334081 hasConcept C8415881 @default.
- W2150334081 hasConcept C86803240 @default.
- W2150334081 hasConcept C94641424 @default.
- W2150334081 hasConcept C95371953 @default.
- W2150334081 hasConceptScore W2150334081C104317684 @default.
- W2150334081 hasConceptScore W2150334081C116834253 @default.
- W2150334081 hasConceptScore W2150334081C121332964 @default.
- W2150334081 hasConceptScore W2150334081C124101348 @default.
- W2150334081 hasConceptScore W2150334081C144817290 @default.
- W2150334081 hasConceptScore W2150334081C150194340 @default.
- W2150334081 hasConceptScore W2150334081C152671427 @default.
- W2150334081 hasConceptScore W2150334081C154945302 @default.
- W2150334081 hasConceptScore W2150334081C158693339 @default.
- W2150334081 hasConceptScore W2150334081C201797286 @default.
- W2150334081 hasConceptScore W2150334081C33704608 @default.
- W2150334081 hasConceptScore W2150334081C41008148 @default.
- W2150334081 hasConceptScore W2150334081C42355184 @default.
- W2150334081 hasConceptScore W2150334081C51432778 @default.
- W2150334081 hasConceptScore W2150334081C54355233 @default.
- W2150334081 hasConceptScore W2150334081C59822182 @default.
- W2150334081 hasConceptScore W2150334081C60644358 @default.
- W2150334081 hasConceptScore W2150334081C62520636 @default.
- W2150334081 hasConceptScore W2150334081C70721500 @default.
- W2150334081 hasConceptScore W2150334081C73555534 @default.
- W2150334081 hasConceptScore W2150334081C8415881 @default.
- W2150334081 hasConceptScore W2150334081C86803240 @default.
- W2150334081 hasConceptScore W2150334081C94641424 @default.
- W2150334081 hasConceptScore W2150334081C95371953 @default.
- W2150334081 hasIssue "S5" @default.
- W2150334081 hasLocation W21503340811 @default.
- W2150334081 hasLocation W21503340812 @default.
- W2150334081 hasLocation W21503340813 @default.
- W2150334081 hasLocation W21503340814 @default.