Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150389968> ?p ?o ?g. }
- W2150389968 endingPage "628" @default.
- W2150389968 startingPage "621" @default.
- W2150389968 abstract "Accurate automatic assignment of protein functions remains a challenge for genome annotation. We have developed and compared the automatic annotation of four bacterial genomes employing a 5-fold cross-validation procedure and several machine learning methods.The analyzed genomes were manually annotated with FunCat categories in MIPS providing a gold standard. Features describing a pair of sequences rather than each sequence alone were used. The descriptors were derived from sequence alignment scores, InterPro domains, synteny information, sequence length and calculated protein properties. Following training we scored all pairs from the validation sets, selected a pair with the highest predicted score and annotated the target protein with functional categories of the prototype protein. The data integration using machine-learning methods provided significantly higher annotation accuracy compared to the use of individual descriptors alone. The neural network approach showed the best performance. The descriptors derived from the InterPro domains and sequence similarity provided the highest contribution to the method performance. The predicted annotation scores allow differentiation of reliable versus non-reliable annotations. The developed approach was applied to annotate the protein sequences from 180 complete bacterial genomes.The FUNcat Annotation Tool (FUNAT) is available on-line as Web Services at http://mips.gsf.de/proj/funat." @default.
- W2150389968 created "2016-06-24" @default.
- W2150389968 creator A5045900336 @default.
- W2150389968 creator A5051653794 @default.
- W2150389968 creator A5067679577 @default.
- W2150389968 creator A5081584590 @default.
- W2150389968 creator A5086939772 @default.
- W2150389968 date "2008-01-03" @default.
- W2150389968 modified "2023-09-30" @default.
- W2150389968 title "Beyond the ‘best’ match: machine learning annotation of protein sequences by integration of different sources of information" @default.
- W2150389968 cites W1504991194 @default.
- W2150389968 cites W1517588910 @default.
- W2150389968 cites W1521398555 @default.
- W2150389968 cites W1533936090 @default.
- W2150389968 cites W1536270671 @default.
- W2150389968 cites W1554313068 @default.
- W2150389968 cites W1975796937 @default.
- W2150389968 cites W1992437878 @default.
- W2150389968 cites W1993267991 @default.
- W2150389968 cites W1997268601 @default.
- W2150389968 cites W2002817195 @default.
- W2150389968 cites W2005233786 @default.
- W2150389968 cites W2006211612 @default.
- W2150389968 cites W2006360003 @default.
- W2150389968 cites W2011986160 @default.
- W2150389968 cites W2026649417 @default.
- W2150389968 cites W2051916497 @default.
- W2150389968 cites W2055193239 @default.
- W2150389968 cites W2065820441 @default.
- W2150389968 cites W2070955875 @default.
- W2150389968 cites W2071551353 @default.
- W2150389968 cites W2077582053 @default.
- W2150389968 cites W2087064593 @default.
- W2150389968 cites W2097263991 @default.
- W2150389968 cites W2097413543 @default.
- W2150389968 cites W2100990314 @default.
- W2150389968 cites W2103017472 @default.
- W2150389968 cites W2106737886 @default.
- W2150389968 cites W2110734043 @default.
- W2150389968 cites W2116999639 @default.
- W2150389968 cites W2119027485 @default.
- W2150389968 cites W2119043225 @default.
- W2150389968 cites W2119452210 @default.
- W2150389968 cites W2124166542 @default.
- W2150389968 cites W2126775187 @default.
- W2150389968 cites W2128379497 @default.
- W2150389968 cites W2128859735 @default.
- W2150389968 cites W2129448726 @default.
- W2150389968 cites W2130925474 @default.
- W2150389968 cites W2133014144 @default.
- W2150389968 cites W2134789671 @default.
- W2150389968 cites W2135805255 @default.
- W2150389968 cites W2136522597 @default.
- W2150389968 cites W2137810087 @default.
- W2150389968 cites W2137917513 @default.
- W2150389968 cites W2144482798 @default.
- W2150389968 cites W2152376949 @default.
- W2150389968 cites W2152770371 @default.
- W2150389968 cites W2154370832 @default.
- W2150389968 cites W2155440340 @default.
- W2150389968 cites W2158714788 @default.
- W2150389968 cites W2160375677 @default.
- W2150389968 cites W2161062388 @default.
- W2150389968 cites W2161444669 @default.
- W2150389968 cites W2161746138 @default.
- W2150389968 cites W2166525781 @default.
- W2150389968 cites W2167188257 @default.
- W2150389968 cites W2171936986 @default.
- W2150389968 cites W2951726307 @default.
- W2150389968 cites W4246714190 @default.
- W2150389968 cites W4246925013 @default.
- W2150389968 cites W4248536238 @default.
- W2150389968 cites W4299392555 @default.
- W2150389968 doi "https://doi.org/10.1093/bioinformatics/btm633" @default.
- W2150389968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18174184" @default.
- W2150389968 hasPublicationYear "2008" @default.
- W2150389968 type Work @default.
- W2150389968 sameAs 2150389968 @default.
- W2150389968 citedByCount "9" @default.
- W2150389968 countsByYear W21503899682012 @default.
- W2150389968 countsByYear W21503899682014 @default.
- W2150389968 countsByYear W21503899682015 @default.
- W2150389968 countsByYear W21503899682016 @default.
- W2150389968 countsByYear W21503899682023 @default.
- W2150389968 crossrefType "journal-article" @default.
- W2150389968 hasAuthorship W2150389968A5045900336 @default.
- W2150389968 hasAuthorship W2150389968A5051653794 @default.
- W2150389968 hasAuthorship W2150389968A5067679577 @default.
- W2150389968 hasAuthorship W2150389968A5081584590 @default.
- W2150389968 hasAuthorship W2150389968A5086939772 @default.
- W2150389968 hasBestOaLocation W21503899681 @default.
- W2150389968 hasConcept C10010492 @default.
- W2150389968 hasConcept C103278499 @default.
- W2150389968 hasConcept C104317684 @default.
- W2150389968 hasConcept C115961682 @default.
- W2150389968 hasConcept C119857082 @default.
- W2150389968 hasConcept C141231307 @default.
- W2150389968 hasConcept C153180895 @default.