Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150398411> ?p ?o ?g. }
- W2150398411 endingPage "236" @default.
- W2150398411 startingPage "225" @default.
- W2150398411 abstract "This work presents a novel learning algorithm for efficient construction of the radial basis function (RBF) networks that can deliver the same level of accuracy as the support vector machines (SVMs) in data classification applications. The proposed learning algorithm works by constructing one RBF subnetwork to approximate the probability density function of each class of objects in the training data set. With respect to algorithm design, the main distinction of the proposed learning algorithm is the novel kernel density estimation algorithm that features an average time complexity of O(nlogn), where n is the number of samples in the training data set. One important advantage of the proposed learning algorithm, in comparison with the SVM, is that the proposed learning algorithm generally takes far less time to construct a data classifier with an optimized parameter setting. This feature is of significance for many contemporary applications, in particular, for those applications in which new objects are continuously added into an already large database. Another desirable feature of the proposed learning algorithm is that the RBF networks constructed are capable of carrying out data classification with more than two classes of objects in one single run. In other words, unlike with the SVM, there is no need to resort to mechanisms such as one-against-one or one-against-all for handling datasets with more than two classes of objects. The comparison with SVM is of particular interest, because it has been shown in a number of recent studies that SVM generally are able to deliver higher classification accuracy than the other existing data classification algorithms. As the proposed learning algorithm is instance-based, the data reduction issue is also addressed in this paper. One interesting observation in this regard is that, for all three data sets used in data reduction experiments, the number of training samples remaining after a na/spl inodot//spl uml/ve data reduction mechanism is applied is quite close to the number of support vectors identified by the SVM software. This paper also compares the performance of the RBF networks constructed with the proposed learning algorithm and those constructed with a conventional cluster-based learning algorithm. The most interesting observation learned is that, with respect to data classification, the distributions of training samples near the boundaries between different classes of objects carry more crucial information than the distributions of samples in the inner parts of the clusters." @default.
- W2150398411 created "2016-06-24" @default.
- W2150398411 creator A5008287088 @default.
- W2150398411 creator A5025555646 @default.
- W2150398411 creator A5054453758 @default.
- W2150398411 creator A5077357809 @default.
- W2150398411 creator A5086378314 @default.
- W2150398411 date "2005-01-01" @default.
- W2150398411 modified "2023-10-01" @default.
- W2150398411 title "Data Classification With Radial Basis Function Networks Based on a Novel Kernel Density Estimation Algorithm" @default.
- W2150398411 cites W1520517775 @default.
- W2150398411 cites W1649397739 @default.
- W2150398411 cites W1980290744 @default.
- W2150398411 cites W1988735952 @default.
- W2150398411 cites W2024184249 @default.
- W2150398411 cites W2055522016 @default.
- W2150398411 cites W2063513989 @default.
- W2150398411 cites W2081040353 @default.
- W2150398411 cites W2082988498 @default.
- W2150398411 cites W2114160202 @default.
- W2150398411 cites W2123207935 @default.
- W2150398411 cites W2143628522 @default.
- W2150398411 cites W2143956139 @default.
- W2150398411 cites W2155399784 @default.
- W2150398411 cites W2158001550 @default.
- W2150398411 cites W2165558283 @default.
- W2150398411 cites W2170654002 @default.
- W2150398411 cites W2171277043 @default.
- W2150398411 cites W2172000360 @default.
- W2150398411 cites W4232693646 @default.
- W2150398411 cites W4298563222 @default.
- W2150398411 doi "https://doi.org/10.1109/tnn.2004.836229" @default.
- W2150398411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15732402" @default.
- W2150398411 hasPublicationYear "2005" @default.
- W2150398411 type Work @default.
- W2150398411 sameAs 2150398411 @default.
- W2150398411 citedByCount "158" @default.
- W2150398411 countsByYear W21503984112012 @default.
- W2150398411 countsByYear W21503984112013 @default.
- W2150398411 countsByYear W21503984112014 @default.
- W2150398411 countsByYear W21503984112015 @default.
- W2150398411 countsByYear W21503984112016 @default.
- W2150398411 countsByYear W21503984112017 @default.
- W2150398411 countsByYear W21503984112018 @default.
- W2150398411 countsByYear W21503984112019 @default.
- W2150398411 countsByYear W21503984112020 @default.
- W2150398411 countsByYear W21503984112021 @default.
- W2150398411 countsByYear W21503984112022 @default.
- W2150398411 countsByYear W21503984112023 @default.
- W2150398411 crossrefType "journal-article" @default.
- W2150398411 hasAuthorship W2150398411A5008287088 @default.
- W2150398411 hasAuthorship W2150398411A5025555646 @default.
- W2150398411 hasAuthorship W2150398411A5054453758 @default.
- W2150398411 hasAuthorship W2150398411A5077357809 @default.
- W2150398411 hasAuthorship W2150398411A5086378314 @default.
- W2150398411 hasBestOaLocation W21503984112 @default.
- W2150398411 hasConcept C110083411 @default.
- W2150398411 hasConcept C11413529 @default.
- W2150398411 hasConcept C114614502 @default.
- W2150398411 hasConcept C119857082 @default.
- W2150398411 hasConcept C122280245 @default.
- W2150398411 hasConcept C12267149 @default.
- W2150398411 hasConcept C153180895 @default.
- W2150398411 hasConcept C154945302 @default.
- W2150398411 hasConcept C33923547 @default.
- W2150398411 hasConcept C41008148 @default.
- W2150398411 hasConcept C50644808 @default.
- W2150398411 hasConcept C74193536 @default.
- W2150398411 hasConcept C75866337 @default.
- W2150398411 hasConcept C95623464 @default.
- W2150398411 hasConcept C98856871 @default.
- W2150398411 hasConceptScore W2150398411C110083411 @default.
- W2150398411 hasConceptScore W2150398411C11413529 @default.
- W2150398411 hasConceptScore W2150398411C114614502 @default.
- W2150398411 hasConceptScore W2150398411C119857082 @default.
- W2150398411 hasConceptScore W2150398411C122280245 @default.
- W2150398411 hasConceptScore W2150398411C12267149 @default.
- W2150398411 hasConceptScore W2150398411C153180895 @default.
- W2150398411 hasConceptScore W2150398411C154945302 @default.
- W2150398411 hasConceptScore W2150398411C33923547 @default.
- W2150398411 hasConceptScore W2150398411C41008148 @default.
- W2150398411 hasConceptScore W2150398411C50644808 @default.
- W2150398411 hasConceptScore W2150398411C74193536 @default.
- W2150398411 hasConceptScore W2150398411C75866337 @default.
- W2150398411 hasConceptScore W2150398411C95623464 @default.
- W2150398411 hasConceptScore W2150398411C98856871 @default.
- W2150398411 hasIssue "1" @default.
- W2150398411 hasLocation W21503984111 @default.
- W2150398411 hasLocation W21503984112 @default.
- W2150398411 hasLocation W21503984113 @default.
- W2150398411 hasLocation W21503984114 @default.
- W2150398411 hasOpenAccess W2150398411 @default.
- W2150398411 hasPrimaryLocation W21503984111 @default.
- W2150398411 hasRelatedWork W1550105856 @default.
- W2150398411 hasRelatedWork W1967440840 @default.
- W2150398411 hasRelatedWork W2022862073 @default.
- W2150398411 hasRelatedWork W2027376491 @default.
- W2150398411 hasRelatedWork W2138105001 @default.