Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150399222> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2150399222 endingPage "365" @default.
- W2150399222 startingPage "350" @default.
- W2150399222 abstract "It is well accepted that the data association or the correspondence problem is one of the toughest problems faced by any state estimation algorithm. Particularly in robotics, it is not very well addressed. This paper introduces a multidimensional assignment (MDA)-based data association algorithm for the simultaneous localization and map building (SLAM) problem in mobile robot navigation. The data association problem is cast in a general discrete optimization framework and the MDA formulation for multitarget tracking is extended for SLAM using sensor location uncertainty with the joint likelihood of measurements over multiple frames as the objective function. Methods for feature initialization and management are also integrated into the algorithm. When clutter is high and features are sparse, the compatibility information of features of a single measurement frame is not sufficient to make effective data-association decisions,thus compromising performance of single-frame-based methods. However, in a multiple-measurement-frame approach, the availability of more than one frame of measurement provides for more effective data-association decisions to be made, as consistency of measurements are looked at in several frames of measurement. Simulations are conducted to verify the performance gains over the conventional nearest neighbor (NN) data association algorithm and the joint compatibility branch and bound (JCBB) algorithm, especially in the presence of varying densities of spurious measurements and dynamic objects. Experimental results with ground truth are presented to demonstrate the practicality of the proposed data-association method in complex and large outdoor environments and its effectiveness over single-frame-based NN and JCBB schemes." @default.
- W2150399222 created "2016-06-24" @default.
- W2150399222 creator A5030210127 @default.
- W2150399222 creator A5048399634 @default.
- W2150399222 creator A5087056623 @default.
- W2150399222 date "2006-04-01" @default.
- W2150399222 modified "2023-10-18" @default.
- W2150399222 title "Toward multidimensional assignment data association in robot localization and mapping" @default.
- W2150399222 cites W1998378772 @default.
- W2150399222 cites W2008465072 @default.
- W2150399222 cites W2014898029 @default.
- W2150399222 cites W2020265997 @default.
- W2150399222 cites W2026805101 @default.
- W2150399222 cites W2070669127 @default.
- W2150399222 cites W2107402720 @default.
- W2150399222 cites W2109749443 @default.
- W2150399222 cites W2111175068 @default.
- W2150399222 cites W2118171245 @default.
- W2150399222 cites W2121466299 @default.
- W2150399222 cites W2127923214 @default.
- W2150399222 cites W2143864104 @default.
- W2150399222 cites W2168210109 @default.
- W2150399222 cites W2611147814 @default.
- W2150399222 doi "https://doi.org/10.1109/tro.2006.870634" @default.
- W2150399222 hasPublicationYear "2006" @default.
- W2150399222 type Work @default.
- W2150399222 sameAs 2150399222 @default.
- W2150399222 citedByCount "53" @default.
- W2150399222 countsByYear W21503992222012 @default.
- W2150399222 countsByYear W21503992222013 @default.
- W2150399222 countsByYear W21503992222014 @default.
- W2150399222 countsByYear W21503992222015 @default.
- W2150399222 countsByYear W21503992222016 @default.
- W2150399222 countsByYear W21503992222017 @default.
- W2150399222 countsByYear W21503992222018 @default.
- W2150399222 countsByYear W21503992222019 @default.
- W2150399222 countsByYear W21503992222021 @default.
- W2150399222 crossrefType "journal-article" @default.
- W2150399222 hasAuthorship W2150399222A5030210127 @default.
- W2150399222 hasAuthorship W2150399222A5048399634 @default.
- W2150399222 hasAuthorship W2150399222A5087056623 @default.
- W2150399222 hasConcept C142853389 @default.
- W2150399222 hasConcept C154945302 @default.
- W2150399222 hasConcept C15744967 @default.
- W2150399222 hasConcept C19966478 @default.
- W2150399222 hasConcept C2983325608 @default.
- W2150399222 hasConcept C31972630 @default.
- W2150399222 hasConcept C41008148 @default.
- W2150399222 hasConcept C49937458 @default.
- W2150399222 hasConcept C542102704 @default.
- W2150399222 hasConcept C90509273 @default.
- W2150399222 hasConceptScore W2150399222C142853389 @default.
- W2150399222 hasConceptScore W2150399222C154945302 @default.
- W2150399222 hasConceptScore W2150399222C15744967 @default.
- W2150399222 hasConceptScore W2150399222C19966478 @default.
- W2150399222 hasConceptScore W2150399222C2983325608 @default.
- W2150399222 hasConceptScore W2150399222C31972630 @default.
- W2150399222 hasConceptScore W2150399222C41008148 @default.
- W2150399222 hasConceptScore W2150399222C49937458 @default.
- W2150399222 hasConceptScore W2150399222C542102704 @default.
- W2150399222 hasConceptScore W2150399222C90509273 @default.
- W2150399222 hasIssue "2" @default.
- W2150399222 hasLocation W21503992221 @default.
- W2150399222 hasOpenAccess W2150399222 @default.
- W2150399222 hasPrimaryLocation W21503992221 @default.
- W2150399222 hasRelatedWork W1941772210 @default.
- W2150399222 hasRelatedWork W1995274592 @default.
- W2150399222 hasRelatedWork W2000747543 @default.
- W2150399222 hasRelatedWork W2058063222 @default.
- W2150399222 hasRelatedWork W2118648141 @default.
- W2150399222 hasRelatedWork W2123436641 @default.
- W2150399222 hasRelatedWork W2151698195 @default.
- W2150399222 hasRelatedWork W2388150605 @default.
- W2150399222 hasRelatedWork W2965672371 @default.
- W2150399222 hasRelatedWork W4236636304 @default.
- W2150399222 hasVolume "22" @default.
- W2150399222 isParatext "false" @default.
- W2150399222 isRetracted "false" @default.
- W2150399222 magId "2150399222" @default.
- W2150399222 workType "article" @default.