Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150404871> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2150404871 endingPage "471" @default.
- W2150404871 startingPage "471" @default.
- W2150404871 abstract "Standing radial cross-waves in an annular wave tank are investigated using Whitham's average-Lagrangian method. For the simplest case, in which a single radial cross-wave is excited, energy is transferred from the wavemaker to the cross-wave through the spatial mean motion of the free surface, as described by Garrett (1970) for a purely transverse cross-wave in a rectangular tank. In addition, energy is transferred through spatial coupling since, in contrast to the purely transverse cross-wave in the rectangular tank, the (non-axisymmetric) radial cross-wave is three-dimensional. It is shown in an Appendix that this spatial coupling does occur for a three-dimensional cross-wave in a rectangular tank. The equations that govern this single-mode resonance are isomorphic to those that govern the Faraday resonance of surface waves in a basin of fluid subjected to vertical excitation (Miles 1984a).It is found that the second-order Stokes-wave expansion for deep-water, standing gravity waves, which is regular for rectangular containers, may become singular for circular containers (Mack (1962) noted these resonances for finite-depth, standing gravity waves in circular containers). The evolution equations that govern two distinct types of resonant behaviour are derived: (i) 2:1 resonance between a radial cross-wave and a resonantly forces axisymmetric wave, corresponding to approximate equality among the driving frequency, a natural frequency of the directly forced wave, and twice the natural frequency of a cross-wave; (ii) 2:1 internal resonance between a radial cross-wave and a non-axisymmetric second harmonic, corresponding to approximate equality among the driving frequency, the natural frequency of a non-axisymmetric wave of even azimuthal wavenumber, and twice the natural frc.quency of the cross-wave. The axisymmetric, directly forced wave in (i) is resonantly excited and exchanges energy with the subharmonic cross-wave through spatial coupling, whereas the cross-wave in (ii) is parametrically excited and exchanges energy with the non-axisymmetric second harmonic through spatial coupling. The equations governing case (i) are shown to exhibit chaotic motions; those governing (ii) are shown to be isomorphic to the equations governing 2:1 internal resonance in the Faraday problem (Miles 1984a, §6), which have been shown to exhibit chaotic motions (Gu & Sethna 1987).Preliminary experiments on standing radial cross-waves are reported in an Appendix, and theoretical predictions of mode stability are in qualitative agreement with these experiments. For the single-mode theory, the interaction coefficient that is a measure of the energy exchange between the wavemaker and the cross-wave is evaluated numerically for a particular wavemaker. The maximum interaction coefficient for a fixed azimuthal wavenumber of the cross-wave typically occurs for that radial mode number for which the turning point of the cross-wave radial profile is nearest the wavemaker. The present experiments for standing radial cross-waves are compared with those of Tatsuno, Inoue & Okabe (1969) for progressive radial cross-waves." @default.
- W2150404871 created "2016-06-24" @default.
- W2150404871 creator A5053163095 @default.
- W2150404871 creator A5077750773 @default.
- W2150404871 date "1991-01-01" @default.
- W2150404871 modified "2023-09-27" @default.
- W2150404871 title "Standing radial cross-waves" @default.
- W2150404871 cites W1989391163 @default.
- W2150404871 cites W1995424400 @default.
- W2150404871 cites W2006148468 @default.
- W2150404871 cites W2018158846 @default.
- W2150404871 cites W2023276736 @default.
- W2150404871 cites W2023506112 @default.
- W2150404871 cites W2047756759 @default.
- W2150404871 cites W2055955952 @default.
- W2150404871 cites W2065319742 @default.
- W2150404871 cites W2110137892 @default.
- W2150404871 cites W2120135064 @default.
- W2150404871 cites W2125255484 @default.
- W2150404871 cites W2127312261 @default.
- W2150404871 cites W2129483046 @default.
- W2150404871 cites W2137650955 @default.
- W2150404871 cites W2156902038 @default.
- W2150404871 cites W2168004730 @default.
- W2150404871 cites W2312543287 @default.
- W2150404871 cites W3011104754 @default.
- W2150404871 doi "https://doi.org/10.1017/s0022112091001180" @default.
- W2150404871 hasPublicationYear "1991" @default.
- W2150404871 type Work @default.
- W2150404871 sameAs 2150404871 @default.
- W2150404871 citedByCount "18" @default.
- W2150404871 countsByYear W21504048712012 @default.
- W2150404871 countsByYear W21504048712013 @default.
- W2150404871 countsByYear W21504048712014 @default.
- W2150404871 countsByYear W21504048712016 @default.
- W2150404871 countsByYear W21504048712019 @default.
- W2150404871 countsByYear W21504048712020 @default.
- W2150404871 countsByYear W21504048712021 @default.
- W2150404871 countsByYear W21504048712023 @default.
- W2150404871 crossrefType "journal-article" @default.
- W2150404871 hasAuthorship W2150404871A5053163095 @default.
- W2150404871 hasAuthorship W2150404871A5077750773 @default.
- W2150404871 hasConcept C103437262 @default.
- W2150404871 hasConcept C120665830 @default.
- W2150404871 hasConcept C121130766 @default.
- W2150404871 hasConcept C121332964 @default.
- W2150404871 hasConcept C139210041 @default.
- W2150404871 hasConcept C143351421 @default.
- W2150404871 hasConcept C160507315 @default.
- W2150404871 hasConcept C169596890 @default.
- W2150404871 hasConcept C184779094 @default.
- W2150404871 hasConcept C199956316 @default.
- W2150404871 hasConcept C33026886 @default.
- W2150404871 hasConcept C43179477 @default.
- W2150404871 hasConcept C44886760 @default.
- W2150404871 hasConcept C57879066 @default.
- W2150404871 hasConcept C74650414 @default.
- W2150404871 hasConcept C84174578 @default.
- W2150404871 hasConceptScore W2150404871C103437262 @default.
- W2150404871 hasConceptScore W2150404871C120665830 @default.
- W2150404871 hasConceptScore W2150404871C121130766 @default.
- W2150404871 hasConceptScore W2150404871C121332964 @default.
- W2150404871 hasConceptScore W2150404871C139210041 @default.
- W2150404871 hasConceptScore W2150404871C143351421 @default.
- W2150404871 hasConceptScore W2150404871C160507315 @default.
- W2150404871 hasConceptScore W2150404871C169596890 @default.
- W2150404871 hasConceptScore W2150404871C184779094 @default.
- W2150404871 hasConceptScore W2150404871C199956316 @default.
- W2150404871 hasConceptScore W2150404871C33026886 @default.
- W2150404871 hasConceptScore W2150404871C43179477 @default.
- W2150404871 hasConceptScore W2150404871C44886760 @default.
- W2150404871 hasConceptScore W2150404871C57879066 @default.
- W2150404871 hasConceptScore W2150404871C74650414 @default.
- W2150404871 hasConceptScore W2150404871C84174578 @default.
- W2150404871 hasIssue "-1" @default.
- W2150404871 hasLocation W21504048711 @default.
- W2150404871 hasOpenAccess W2150404871 @default.
- W2150404871 hasPrimaryLocation W21504048711 @default.
- W2150404871 hasRelatedWork W1042642904 @default.
- W2150404871 hasRelatedWork W2020395075 @default.
- W2150404871 hasRelatedWork W2055073170 @default.
- W2150404871 hasRelatedWork W2100607541 @default.
- W2150404871 hasRelatedWork W2161225215 @default.
- W2150404871 hasRelatedWork W2351791657 @default.
- W2150404871 hasRelatedWork W2766578342 @default.
- W2150404871 hasRelatedWork W3119204142 @default.
- W2150404871 hasRelatedWork W328988632 @default.
- W2150404871 hasRelatedWork W602394843 @default.
- W2150404871 hasVolume "222" @default.
- W2150404871 isParatext "false" @default.
- W2150404871 isRetracted "false" @default.
- W2150404871 magId "2150404871" @default.
- W2150404871 workType "article" @default.