Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150413100> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2150413100 endingPage "903" @default.
- W2150413100 startingPage "885" @default.
- W2150413100 abstract "A periodic time series analysis is explored in the context of unobserved components time series models that include stochastic time functions for trend, seasonal and irregular effects. Periodic time series models allow dynamic characteristics (autocovariances) to depend on the period of the year, month, week or day. In the standard multivariate approach one can interpret a periodic time series analysis as a simultaneous treatment of typically yearly time series where each series is related to a particular season. Here, the periodic analysis applies to a vector of monthly time series related to each day of the month. Particular focus is on the forecasting performance and therefore on the underlying periodic forecast function, defined by the in-sample observation weights for producing (multi-step) forecasts. These weight patterns facilitate the interpretation of periodic model extensions. A statistical state space approach is used to estimate the model and allows for irregularly spaced observations in daily time series. Recent algorithms are adopted for the computation of observation weights for forecasting based on state space models with regressor variables. The methodology is illustrated for daily Dutch tax revenues that appear to have periodic dynamic properties. The dimension of our periodic unobserved components model is relatively large as we allow each element (day) of the vector of monthly time series to have a changing seasonal pattern. Nevertheless, even with only five years of data we find that the increased periodic flexibility can help in out-of-sample forecasting for two extra years of data." @default.
- W2150413100 created "2016-06-24" @default.
- W2150413100 creator A5056085635 @default.
- W2150413100 creator A5064311560 @default.
- W2150413100 date "2006-11-01" @default.
- W2150413100 modified "2023-10-11" @default.
- W2150413100 title "Forecasting daily time series using periodic unobserved components time series models" @default.
- W2150413100 cites W1975138225 @default.
- W2150413100 cites W1978990971 @default.
- W2150413100 cites W1982470119 @default.
- W2150413100 cites W2003602843 @default.
- W2150413100 cites W2014953294 @default.
- W2150413100 cites W2085866051 @default.
- W2150413100 cites W2086453941 @default.
- W2150413100 cites W2091376130 @default.
- W2150413100 cites W2150661815 @default.
- W2150413100 cites W4240735488 @default.
- W2150413100 cites W4242827154 @default.
- W2150413100 cites W4253015550 @default.
- W2150413100 doi "https://doi.org/10.1016/j.csda.2005.09.009" @default.
- W2150413100 hasPublicationYear "2006" @default.
- W2150413100 type Work @default.
- W2150413100 sameAs 2150413100 @default.
- W2150413100 citedByCount "52" @default.
- W2150413100 countsByYear W21504131002012 @default.
- W2150413100 countsByYear W21504131002013 @default.
- W2150413100 countsByYear W21504131002014 @default.
- W2150413100 countsByYear W21504131002019 @default.
- W2150413100 countsByYear W21504131002020 @default.
- W2150413100 countsByYear W21504131002021 @default.
- W2150413100 countsByYear W21504131002022 @default.
- W2150413100 countsByYear W21504131002023 @default.
- W2150413100 crossrefType "journal-article" @default.
- W2150413100 hasAuthorship W2150413100A5056085635 @default.
- W2150413100 hasAuthorship W2150413100A5064311560 @default.
- W2150413100 hasBestOaLocation W21504131002 @default.
- W2150413100 hasConcept C105795698 @default.
- W2150413100 hasConcept C143724316 @default.
- W2150413100 hasConcept C149782125 @default.
- W2150413100 hasConcept C151406439 @default.
- W2150413100 hasConcept C151730666 @default.
- W2150413100 hasConcept C166957645 @default.
- W2150413100 hasConcept C205649164 @default.
- W2150413100 hasConcept C2779343474 @default.
- W2150413100 hasConcept C33923547 @default.
- W2150413100 hasConcept C72434380 @default.
- W2150413100 hasConcept C86803240 @default.
- W2150413100 hasConceptScore W2150413100C105795698 @default.
- W2150413100 hasConceptScore W2150413100C143724316 @default.
- W2150413100 hasConceptScore W2150413100C149782125 @default.
- W2150413100 hasConceptScore W2150413100C151406439 @default.
- W2150413100 hasConceptScore W2150413100C151730666 @default.
- W2150413100 hasConceptScore W2150413100C166957645 @default.
- W2150413100 hasConceptScore W2150413100C205649164 @default.
- W2150413100 hasConceptScore W2150413100C2779343474 @default.
- W2150413100 hasConceptScore W2150413100C33923547 @default.
- W2150413100 hasConceptScore W2150413100C72434380 @default.
- W2150413100 hasConceptScore W2150413100C86803240 @default.
- W2150413100 hasIssue "2" @default.
- W2150413100 hasLocation W21504131001 @default.
- W2150413100 hasLocation W21504131002 @default.
- W2150413100 hasLocation W21504131003 @default.
- W2150413100 hasLocation W21504131004 @default.
- W2150413100 hasLocation W21504131005 @default.
- W2150413100 hasOpenAccess W2150413100 @default.
- W2150413100 hasPrimaryLocation W21504131001 @default.
- W2150413100 hasRelatedWork W1550175370 @default.
- W2150413100 hasRelatedWork W1919101720 @default.
- W2150413100 hasRelatedWork W1922851888 @default.
- W2150413100 hasRelatedWork W1990205660 @default.
- W2150413100 hasRelatedWork W2119012848 @default.
- W2150413100 hasRelatedWork W4246257243 @default.
- W2150413100 hasRelatedWork W4386126592 @default.
- W2150413100 hasRelatedWork W4387331850 @default.
- W2150413100 hasRelatedWork W96888382 @default.
- W2150413100 hasRelatedWork W2622688551 @default.
- W2150413100 hasVolume "51" @default.
- W2150413100 isParatext "false" @default.
- W2150413100 isRetracted "false" @default.
- W2150413100 magId "2150413100" @default.
- W2150413100 workType "article" @default.