Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150445325> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2150445325 abstract "This manuscript describes the stereotactic radiosurgical work of one institution over a 5 year (1999–2004) period and discusses this work in the context of the changing field of radiosurgery. In 1949, Leksell described a system, which concentrated radiation therapy on intracranial targets within the brain [1]. He conceived image guided, multiple, cross-firing, tightly collimated and small radiation portals ‘‘focusing’’ a high single radiotherapy dose on an intracranial target. His first clinical work was aimed at destroying intracerebral pathways in functional disorders and he coined the name stereotactic ‘‘radiosurgery’’ – a nickname which has endured. The early work was hampered by inadequate equipment, as only a 200 KV X-ray apparatus was available. The concept was next furthered in 1968, again in Sweden, with the introduction of a cobalt-60 gamma unit [2]. The UK’s first gamma unit became operational in Sheffield in 1985 [3]. In the current machine at St. Bartholomew’s/London Radiosurgical Centre (Gamma Knife; Electa Instruments AB, Linkoping, Sweden) there are 201 fixed cobalt-60 sources, each a thin rod of 1 mm diameter, the long axis of which is oriented along a radius of a hemisphere – the helmet, into which the patient’s head, within a stereotactic frame, fits. The centre point (or isocentre) of this hemisphere is the point at which the stereotactic co-ordinates of the mapped intracranial target are positioned. In the last decade there have been several advances in Gamma Knife technology. The introduction of the model ‘‘C’’ machine has brought automation to various aspects, whilst maintaining the principal design features. The biggest single change has been the introduction of the motorized automatic positioning system (APS) for targeting each shot of the therapy. The APS has been demonstrated to significantly shorten the overall time taken to deliver a treatment and by reducing the need for human intervention, to lessen the risks of treatment errors [4]. In tandem with hardware improvements, there is continual progress in software design and functionality. The most significant has been the introduction of Gamma Knife ‘‘Wizard’’. This software can be used to semi or fully automate the treatment planning process. Whereas previously, a treatment plan was formulated by a skilled operator, who placed ‘‘shots’’ to obtain an optimal plan, the Wizard employs a computer to automatically calculate the optimal distribution and weighting of shots to best encompass the target. At present, the unit at our centre is the ‘‘B’’ model, although we are capable of mimicking certain ‘‘C’’ model/Wizard characteristics (vide infra). The last decade has seen a substantial advance in the quality and accuracy of three dimensional imaging technologies. The finer detail and clarity obtained improves the accuracy in delineating target lesions (e.g. the excellent imaging of the trigeminal nerve by modern MRI for radiosurgical therapy of trigeminal neuralgia – a routine part of Gamma Knife practice for drug resistant patients). With the increasing availability of PET, work by a variety of groups has started to integrate PET with conventional static, anatomical CT/MRI into the Gamma Knife treatment planning process [5]. Early results suggest that these combined methods of imaging improve target definition, particularly for infiltrating tumours whose boundaries are not so certainly defined on MR alone – we illustrated this in our last quinquennial review [6] and predicted that the technique would also prove valuable to demonstrate whether abnormalities persisting on MRI/CT, after a full cancer therapy programme, remain viable and should be targeted by radiosurgery (e.g. after chemotherapy in the case of intracranial germ cell tumours or after whole brain radiotherapy in the case of metastases) [7]. Over the last 15 years, linear accelerators (linacs) have been adapted for stereotactic delivery of radiation therapy, initially using the isocentric mounting and rotation technology but latterly both fixed fields and dynamic arcing methods have been introduced, in combination with multileaf collimator (MLC) conformational technology. In 1989, the first UK linac based radiosurgery system commenced clinical operation at St. Bartholomew’s Hospital and initially employed multiple non-coplanar arcs around the stereotactically mapped target (usually as a single iso-centre) as the treatment technique. In our last quinquennial review we described our work using that technology [6]. Since that time, the routine availability of multileaf collimation in linacs (leaf widths from 3–10 mm – either as additional accessories (mMLC) or as an integral part of a linac) has allowed improved beam shaping and now most centres practising stereotactic radiation therapy employ either multiple fixed fields or dynamic arcing together with multileaf collimation to improve the conformity of the technique. At St. Bartholomew’s, the acquisition of both Gamma Knife technology and 3 mm leaf width micro-multileaf collimation (in conjunction with our stereotactic linac technology) within the last 5 years has allowed the present Received 14 September 2004 and in revised form 19 November 2004, accepted 6 December 2004." @default.
- W2150445325 created "2016-06-24" @default.
- W2150445325 creator A5001348349 @default.
- W2150445325 creator A5030879870 @default.
- W2150445325 creator A5044841294 @default.
- W2150445325 date "2005-05-01" @default.
- W2150445325 modified "2023-09-26" @default.
- W2150445325 title "Stereotactic radiosurgery at St. Bartholomew's hospital: third quinquennial review" @default.
- W2150445325 cites W123620961 @default.
- W2150445325 cites W1494541308 @default.
- W2150445325 cites W1548179938 @default.
- W2150445325 cites W1575207878 @default.
- W2150445325 cites W1974374747 @default.
- W2150445325 cites W1990146497 @default.
- W2150445325 cites W1992309674 @default.
- W2150445325 cites W1998149404 @default.
- W2150445325 cites W1999205504 @default.
- W2150445325 cites W2008374668 @default.
- W2150445325 cites W2009300462 @default.
- W2150445325 cites W2011680861 @default.
- W2150445325 cites W2016736324 @default.
- W2150445325 cites W2017790961 @default.
- W2150445325 cites W2019043709 @default.
- W2150445325 cites W2023676599 @default.
- W2150445325 cites W2047930883 @default.
- W2150445325 cites W2061962226 @default.
- W2150445325 cites W2068057789 @default.
- W2150445325 cites W2069892292 @default.
- W2150445325 cites W2077858999 @default.
- W2150445325 cites W2084061767 @default.
- W2150445325 cites W2086721428 @default.
- W2150445325 cites W2101053643 @default.
- W2150445325 cites W2119292430 @default.
- W2150445325 cites W2123811698 @default.
- W2150445325 cites W2127256657 @default.
- W2150445325 cites W2129813545 @default.
- W2150445325 cites W2133324612 @default.
- W2150445325 cites W2136285135 @default.
- W2150445325 cites W2140991124 @default.
- W2150445325 cites W2143197948 @default.
- W2150445325 cites W2148023536 @default.
- W2150445325 cites W2158789700 @default.
- W2150445325 cites W2167394089 @default.
- W2150445325 cites W2325928645 @default.
- W2150445325 cites W3034060087 @default.
- W2150445325 cites W4230729601 @default.
- W2150445325 cites W4234680342 @default.
- W2150445325 cites W4296556001 @default.
- W2150445325 doi "https://doi.org/10.1259/bjr/25963871" @default.
- W2150445325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15845929" @default.
- W2150445325 hasPublicationYear "2005" @default.
- W2150445325 type Work @default.
- W2150445325 sameAs 2150445325 @default.
- W2150445325 citedByCount "6" @default.
- W2150445325 crossrefType "journal-article" @default.
- W2150445325 hasAuthorship W2150445325A5001348349 @default.
- W2150445325 hasAuthorship W2150445325A5030879870 @default.
- W2150445325 hasAuthorship W2150445325A5044841294 @default.
- W2150445325 hasConcept C126838900 @default.
- W2150445325 hasConcept C127313418 @default.
- W2150445325 hasConcept C151730666 @default.
- W2150445325 hasConcept C19527891 @default.
- W2150445325 hasConcept C2779343474 @default.
- W2150445325 hasConcept C2780387249 @default.
- W2150445325 hasConcept C2989005 @default.
- W2150445325 hasConcept C2994042627 @default.
- W2150445325 hasConcept C509974204 @default.
- W2150445325 hasConcept C71924100 @default.
- W2150445325 hasConceptScore W2150445325C126838900 @default.
- W2150445325 hasConceptScore W2150445325C127313418 @default.
- W2150445325 hasConceptScore W2150445325C151730666 @default.
- W2150445325 hasConceptScore W2150445325C19527891 @default.
- W2150445325 hasConceptScore W2150445325C2779343474 @default.
- W2150445325 hasConceptScore W2150445325C2780387249 @default.
- W2150445325 hasConceptScore W2150445325C2989005 @default.
- W2150445325 hasConceptScore W2150445325C2994042627 @default.
- W2150445325 hasConceptScore W2150445325C509974204 @default.
- W2150445325 hasConceptScore W2150445325C71924100 @default.
- W2150445325 hasLocation W21504453251 @default.
- W2150445325 hasLocation W21504453252 @default.
- W2150445325 hasOpenAccess W2150445325 @default.
- W2150445325 hasPrimaryLocation W21504453251 @default.
- W2150445325 hasRelatedWork W1985895619 @default.
- W2150445325 hasRelatedWork W2018856919 @default.
- W2150445325 hasRelatedWork W2132730716 @default.
- W2150445325 hasRelatedWork W2187844181 @default.
- W2150445325 hasRelatedWork W2342601826 @default.
- W2150445325 hasRelatedWork W2467653772 @default.
- W2150445325 hasRelatedWork W3197881107 @default.
- W2150445325 hasRelatedWork W3210245320 @default.
- W2150445325 hasRelatedWork W367827289 @default.
- W2150445325 hasRelatedWork W4234321098 @default.
- W2150445325 isParatext "false" @default.
- W2150445325 isRetracted "false" @default.
- W2150445325 magId "2150445325" @default.
- W2150445325 workType "article" @default.