Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150604200> ?p ?o ?g. }
- W2150604200 endingPage "258" @default.
- W2150604200 startingPage "239" @default.
- W2150604200 abstract "In recent years analyses of dependence structures using copulas have become more popular than the standard correlation analysis. Starting from Aas et al. (2009) regular vine pair-copula constructions (PCCs) are considered the most flexible class of multivariate copulas. PCCs are involved objects but (conditional) independence present in data can simplify and reduce them significantly. In this paper the authors detect (conditional) independence in a particular vine PCC model based on bivariate t copulas by deriving and implementing a reversible jump Markov chain Monte Carlo algorithm. However, the methodology is general and can be extended to any regular vine PCC and to all known bivariate copula families. The proposed approach considers model selection and estimation problems for PCCs simultaneously. The effectiveness of the developed algorithm is shown in simulations and its usefulness is illustrated in two real data applications. The Canadian Journal of Statistics 39: 239–258; 2011 © 2011 Statistical Society of Canada Depuis quelques années, les analyses de structure de dépendance utilisant les copules sont devenues plus populaires que les analyses de corrélation standard. Aas et al. (2009), les constructions des copules bidimensionnelles en arborescence régulière (PCC) sont considérées comme la classe la plus flexible de copules multidimensionnelles. Les PCC sont des objets complexes, mais l'indépendance (conditionnelle) présente dans les données peut les simplifier et les réduire de faŽon significative. Dans cet article, les auteurs cherchent à détecter l'indépendance conditionnelle dans une arborescence PCC particulière basée sur des copules t bidimensionnelles en dérivant et implantant un algorithme de Monte-Carlo à chaîne de Markov. Cependant, la méthodologie est générale et elle peut être étendue à n'importe quelle PCC à arborescence régulière et à toutes les familles de copules bidimensionnelles connues. L'approche proposée considère simultanément la sélection de modèles et les problèmes d'estimation dans les PCC. L'efficacité de l'algorithme développé est montrée grâce à des simulations et son utilité est illustrée à l'aide d'application à deux jeux de données réelles. La revue canadienne de statistique 39: 239–258; 2011 © 2011 Société statistique du Canada" @default.
- W2150604200 created "2016-06-24" @default.
- W2150604200 creator A5020151207 @default.
- W2150604200 creator A5079193147 @default.
- W2150604200 date "2011-05-23" @default.
- W2150604200 modified "2023-10-18" @default.
- W2150604200 title "Bayesian model selection for D-vine pair-copula constructions" @default.
- W2150604200 cites W1491718027 @default.
- W2150604200 cites W1529468743 @default.
- W2150604200 cites W1590831612 @default.
- W2150604200 cites W1773976433 @default.
- W2150604200 cites W1827554748 @default.
- W2150604200 cites W1972882514 @default.
- W2150604200 cites W1984931822 @default.
- W2150604200 cites W1988471447 @default.
- W2150604200 cites W1988684120 @default.
- W2150604200 cites W1990225238 @default.
- W2150604200 cites W1990860515 @default.
- W2150604200 cites W1992105816 @default.
- W2150604200 cites W1994403842 @default.
- W2150604200 cites W1994749633 @default.
- W2150604200 cites W2022034627 @default.
- W2150604200 cites W2033612661 @default.
- W2150604200 cites W2037531178 @default.
- W2150604200 cites W2037994526 @default.
- W2150604200 cites W2038885294 @default.
- W2150604200 cites W2042557026 @default.
- W2150604200 cites W2042645953 @default.
- W2150604200 cites W2049835439 @default.
- W2150604200 cites W2053774289 @default.
- W2150604200 cites W2056760934 @default.
- W2150604200 cites W2079253995 @default.
- W2150604200 cites W2096968376 @default.
- W2150604200 cites W2098280243 @default.
- W2150604200 cites W2106706098 @default.
- W2150604200 cites W2124513778 @default.
- W2150604200 cites W2127038280 @default.
- W2150604200 cites W2127958806 @default.
- W2150604200 cites W2138309709 @default.
- W2150604200 cites W2282382832 @default.
- W2150604200 cites W2482072357 @default.
- W2150604200 cites W2484985925 @default.
- W2150604200 cites W2507039649 @default.
- W2150604200 cites W3100486754 @default.
- W2150604200 cites W3122032662 @default.
- W2150604200 cites W4213007602 @default.
- W2150604200 cites W4241861175 @default.
- W2150604200 doi "https://doi.org/10.1002/cjs.10098" @default.
- W2150604200 hasPublicationYear "2011" @default.
- W2150604200 type Work @default.
- W2150604200 sameAs 2150604200 @default.
- W2150604200 citedByCount "48" @default.
- W2150604200 countsByYear W21506042002012 @default.
- W2150604200 countsByYear W21506042002013 @default.
- W2150604200 countsByYear W21506042002015 @default.
- W2150604200 countsByYear W21506042002016 @default.
- W2150604200 countsByYear W21506042002017 @default.
- W2150604200 countsByYear W21506042002018 @default.
- W2150604200 countsByYear W21506042002019 @default.
- W2150604200 countsByYear W21506042002020 @default.
- W2150604200 countsByYear W21506042002021 @default.
- W2150604200 countsByYear W21506042002022 @default.
- W2150604200 countsByYear W21506042002023 @default.
- W2150604200 crossrefType "journal-article" @default.
- W2150604200 hasAuthorship W2150604200A5020151207 @default.
- W2150604200 hasAuthorship W2150604200A5079193147 @default.
- W2150604200 hasConcept C105795698 @default.
- W2150604200 hasConcept C107673813 @default.
- W2150604200 hasConcept C111350023 @default.
- W2150604200 hasConcept C149782125 @default.
- W2150604200 hasConcept C17618745 @default.
- W2150604200 hasConcept C2779676228 @default.
- W2150604200 hasConcept C33923547 @default.
- W2150604200 hasConcept C41008148 @default.
- W2150604200 hasConcept C79772020 @default.
- W2150604200 hasConceptScore W2150604200C105795698 @default.
- W2150604200 hasConceptScore W2150604200C107673813 @default.
- W2150604200 hasConceptScore W2150604200C111350023 @default.
- W2150604200 hasConceptScore W2150604200C149782125 @default.
- W2150604200 hasConceptScore W2150604200C17618745 @default.
- W2150604200 hasConceptScore W2150604200C2779676228 @default.
- W2150604200 hasConceptScore W2150604200C33923547 @default.
- W2150604200 hasConceptScore W2150604200C41008148 @default.
- W2150604200 hasConceptScore W2150604200C79772020 @default.
- W2150604200 hasIssue "2" @default.
- W2150604200 hasLocation W21506042001 @default.
- W2150604200 hasOpenAccess W2150604200 @default.
- W2150604200 hasPrimaryLocation W21506042001 @default.
- W2150604200 hasRelatedWork W2923332986 @default.
- W2150604200 hasRelatedWork W2943652484 @default.
- W2150604200 hasRelatedWork W2963009534 @default.
- W2150604200 hasRelatedWork W2993686317 @default.
- W2150604200 hasRelatedWork W3125387785 @default.
- W2150604200 hasRelatedWork W3137922125 @default.
- W2150604200 hasRelatedWork W4288280625 @default.
- W2150604200 hasRelatedWork W4292718503 @default.
- W2150604200 hasRelatedWork W4380742951 @default.
- W2150604200 hasRelatedWork W2887570132 @default.