Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150855958> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2150855958 endingPage "84" @default.
- W2150855958 startingPage "69" @default.
- W2150855958 abstract "Adverse weather has a major safety impact on travelers on highways. Weather events and their impact on highways can be viewed as predictable, non-recurring incidents that display strong geographic patterns. This study attempts to address the Wisconsin counties with high crash relative risk (RR) under various inclement weather conditions such as snow, rain and fog. Within a Bayesian hierarchical modeling framework, a Poisson model with a log link function including a spatial random effect is proposed. In particular, two types of spatial models are considered. One is a conditional autoregressive (CAR) model that specifies spatial dependence via autoregression among neighboring counties. The other is an exponential model that assumes an exponential decline of spatial dependence as the distance between two counties increases. A spatially independent model is also considered as a baseline model. Bayesian statistical inference results show fairly consistent crash patterns with weather impact. Higher-thanexpected snow-related crashes occurred in the northern Wisconsin counties where more snowfall was experienced throughout the long winter. Rain-related crashes clustered in the areas close to Lake Michigan with more rainfall than other parts of the state. The counties in the southwestern region have overrepresented fog-related crashes partially because of more foggy days in the mountainous valley terrain. Our modeling approach can be recommended to rank the counties for road weather safety planning and programming." @default.
- W2150855958 created "2016-06-24" @default.
- W2150855958 creator A5001226780 @default.
- W2150855958 creator A5025674763 @default.
- W2150855958 creator A5035174578 @default.
- W2150855958 date "2009-07-01" @default.
- W2150855958 modified "2023-09-26" @default.
- W2150855958 title "Spatial analysis of road weather safety data using a Bayesian hierarchical modeling approach" @default.
- W2150855958 hasPublicationYear "2009" @default.
- W2150855958 type Work @default.
- W2150855958 sameAs 2150855958 @default.
- W2150855958 citedByCount "1" @default.
- W2150855958 countsByYear W21508559582014 @default.
- W2150855958 crossrefType "journal-article" @default.
- W2150855958 hasAuthorship W2150855958A5001226780 @default.
- W2150855958 hasAuthorship W2150855958A5025674763 @default.
- W2150855958 hasAuthorship W2150855958A5035174578 @default.
- W2150855958 hasConcept C105795698 @default.
- W2150855958 hasConcept C107673813 @default.
- W2150855958 hasConcept C144024400 @default.
- W2150855958 hasConcept C149923435 @default.
- W2150855958 hasConcept C153294291 @default.
- W2150855958 hasConcept C160234255 @default.
- W2150855958 hasConcept C197046000 @default.
- W2150855958 hasConcept C205649164 @default.
- W2150855958 hasConcept C2908647359 @default.
- W2150855958 hasConcept C33923547 @default.
- W2150855958 hasConcept C39432304 @default.
- W2150855958 hasConcept C73269764 @default.
- W2150855958 hasConceptScore W2150855958C105795698 @default.
- W2150855958 hasConceptScore W2150855958C107673813 @default.
- W2150855958 hasConceptScore W2150855958C144024400 @default.
- W2150855958 hasConceptScore W2150855958C149923435 @default.
- W2150855958 hasConceptScore W2150855958C153294291 @default.
- W2150855958 hasConceptScore W2150855958C160234255 @default.
- W2150855958 hasConceptScore W2150855958C197046000 @default.
- W2150855958 hasConceptScore W2150855958C205649164 @default.
- W2150855958 hasConceptScore W2150855958C2908647359 @default.
- W2150855958 hasConceptScore W2150855958C33923547 @default.
- W2150855958 hasConceptScore W2150855958C39432304 @default.
- W2150855958 hasConceptScore W2150855958C73269764 @default.
- W2150855958 hasIssue "18" @default.
- W2150855958 hasLocation W21508559581 @default.
- W2150855958 hasOpenAccess W2150855958 @default.
- W2150855958 hasPrimaryLocation W21508559581 @default.
- W2150855958 hasRelatedWork W1562752007 @default.
- W2150855958 hasRelatedWork W1628537135 @default.
- W2150855958 hasRelatedWork W1661417531 @default.
- W2150855958 hasRelatedWork W1910001329 @default.
- W2150855958 hasRelatedWork W1981843870 @default.
- W2150855958 hasRelatedWork W2018850436 @default.
- W2150855958 hasRelatedWork W2057067707 @default.
- W2150855958 hasRelatedWork W2069241928 @default.
- W2150855958 hasRelatedWork W2071769383 @default.
- W2150855958 hasRelatedWork W2087681211 @default.
- W2150855958 hasRelatedWork W2132528381 @default.
- W2150855958 hasRelatedWork W2156224118 @default.
- W2150855958 hasRelatedWork W2170534936 @default.
- W2150855958 hasRelatedWork W2327216873 @default.
- W2150855958 hasRelatedWork W2462745108 @default.
- W2150855958 hasRelatedWork W2562107818 @default.
- W2150855958 hasRelatedWork W2571594577 @default.
- W2150855958 hasRelatedWork W2987281750 @default.
- W2150855958 hasRelatedWork W3098882371 @default.
- W2150855958 hasRelatedWork W751504638 @default.
- W2150855958 hasVolume "18" @default.
- W2150855958 isParatext "false" @default.
- W2150855958 isRetracted "false" @default.
- W2150855958 magId "2150855958" @default.
- W2150855958 workType "article" @default.