Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150866110> ?p ?o ?g. }
- W2150866110 endingPage "1609" @default.
- W2150866110 startingPage "1595" @default.
- W2150866110 abstract "Biofilms are a natural occurrence in aquatic environments, including community drinking water systems. The interior of small-diameter tubings in dental unit waterlines (DUWL) are also sites of biofilm formation. In the lumen of the tubings, the flow is minimal, and the water becomes stagnant when the units are not in use. Molecules precipitate from the water onto the interior wall and promote the adherence of planktonic microorganisms from the water. Once they become sessile, the microorganisms change their phenotype. After adherence, there is a so-called surface-associated lag time, and the organisms then enter a growth phase and produce exopolysaccharides that coat the organisms in a slime layer. Within the biofilm, the microorganisms can signal one another, transfer nutrients, and exchange genetic material. The insoluble exopolysaccharides shield the microorganisms from displacement and from penetration by predator organisms, antibiotics, and disinfectants. The external surface layer of microorganisms is faster growing and may detach as swarmer cells. Detachment of microorganisms from dental unit biofilm flushed into the oral cavity could theoretically infect the patient. Splatter and aerosols from dental procedures may possibly infect health care personnel.This study compared three DUWL cleaners (an alkaline peroxide product, a freshly mixed chlorine dioxide product, and a buffer-stabilized chlorine dioxide product) in 16 dental units with self-contained water systems, 6 months after installation in a periodontal teaching clinic. One unit treated by flushing and drying served as a control. Units were sampled daily for 10 days with heterotrophic plate count (HPC) sampler plates. The plates were incubated for 7 days at room temperature, and colonies were counted at 10.5x magnification. Samples of internal water tubing before and after the use of waterline cleaners were processed and examined by scanning electron microscopy.The estimated mean HPC was derived from original and replicate independent counts of two investigators of undiluted and diluted samples, reported as colony forming units (CFU)/ml. Shock treatments with the alkaline peroxide product (n = 5) reduced the HPC from baseline, but in the ratio of daily counts to control, there was a large variance and a trend to return of high counts as days passed. The mean daily HPC was significantly better than the control for only 3 of the 9 days of treatment and exceeded the goal of 200 on 3 days. Freshly mixed chlorine dioxide (n = 4) and the buffer-stabilized chlorine dioxide (n = 5) both reduced HPC to near 0 on all days. Their ratios of daily estimated means to that of the control were significantly (P < 0.001) better at all times. In comparing treatments, the freshly mixed chlorine dioxide was better (P < 0.001) than the alkaline peroxide on 8 of 9 days. The buffered chlorine dioxide treatment was better than the alkaline peroxide at all times. The two chlorine dioxide treatments each had so many HPC counts of 0 that a meaningful statistical difference between them was not calculated. Scanning electron microscopy of plastic waterline tubing samples taken before and after treatments showed reductions in biofilm coverage, but the differences were not statistically significant.Chlorine dioxide waterline cleaners are effective in decontaminating DUWL biofilm. Chlorine dioxide has advantages over other chlorine products. Controlling DUWL biofilm may have beneficial effects on nosocomial infections." @default.
- W2150866110 created "2016-06-24" @default.
- W2150866110 creator A5040762788 @default.
- W2150866110 creator A5077683735 @default.
- W2150866110 creator A5089556888 @default.
- W2150866110 date "2003-11-01" @default.
- W2150866110 modified "2023-09-25" @default.
- W2150866110 title "Formation and Decontamination of Biofilms in Dental Unit Waterlines" @default.
- W2150866110 cites W129757620 @default.
- W2150866110 cites W1480290341 @default.
- W2150866110 cites W1508749862 @default.
- W2150866110 cites W1562655202 @default.
- W2150866110 cites W1602997160 @default.
- W2150866110 cites W1646142787 @default.
- W2150866110 cites W169006449 @default.
- W2150866110 cites W1732762162 @default.
- W2150866110 cites W1741889886 @default.
- W2150866110 cites W1966341412 @default.
- W2150866110 cites W1971601167 @default.
- W2150866110 cites W1984980544 @default.
- W2150866110 cites W1991703432 @default.
- W2150866110 cites W1994930082 @default.
- W2150866110 cites W1996529631 @default.
- W2150866110 cites W2003470674 @default.
- W2150866110 cites W2013262495 @default.
- W2150866110 cites W2015556844 @default.
- W2150866110 cites W2016158447 @default.
- W2150866110 cites W2018970795 @default.
- W2150866110 cites W2023312799 @default.
- W2150866110 cites W2023600513 @default.
- W2150866110 cites W2032092088 @default.
- W2150866110 cites W2033289132 @default.
- W2150866110 cites W2042186100 @default.
- W2150866110 cites W2042346545 @default.
- W2150866110 cites W2043340731 @default.
- W2150866110 cites W2046267646 @default.
- W2150866110 cites W2047694706 @default.
- W2150866110 cites W2047786679 @default.
- W2150866110 cites W2049252624 @default.
- W2150866110 cites W2054035373 @default.
- W2150866110 cites W2056579728 @default.
- W2150866110 cites W2057621064 @default.
- W2150866110 cites W2061516835 @default.
- W2150866110 cites W2064504081 @default.
- W2150866110 cites W2065048510 @default.
- W2150866110 cites W2073084834 @default.
- W2150866110 cites W2076976609 @default.
- W2150866110 cites W2084481060 @default.
- W2150866110 cites W2091421091 @default.
- W2150866110 cites W2101928218 @default.
- W2150866110 cites W2104533433 @default.
- W2150866110 cites W2108293307 @default.
- W2150866110 cites W2108833754 @default.
- W2150866110 cites W2118647933 @default.
- W2150866110 cites W2122235405 @default.
- W2150866110 cites W2122399949 @default.
- W2150866110 cites W2127994827 @default.
- W2150866110 cites W2130276134 @default.
- W2150866110 cites W2136294927 @default.
- W2150866110 cites W2138025597 @default.
- W2150866110 cites W2139535858 @default.
- W2150866110 cites W2140318265 @default.
- W2150866110 cites W2141902326 @default.
- W2150866110 cites W2149556932 @default.
- W2150866110 cites W2155327463 @default.
- W2150866110 cites W2162725109 @default.
- W2150866110 cites W2326513659 @default.
- W2150866110 cites W4213354399 @default.
- W2150866110 cites W4231959579 @default.
- W2150866110 cites W4246586562 @default.
- W2150866110 cites W4247164959 @default.
- W2150866110 cites W4248478067 @default.
- W2150866110 cites W4252697782 @default.
- W2150866110 cites W4290405372 @default.
- W2150866110 cites W8220752 @default.
- W2150866110 doi "https://doi.org/10.1902/jop.2003.74.11.1595" @default.
- W2150866110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14682656" @default.
- W2150866110 hasPublicationYear "2003" @default.
- W2150866110 type Work @default.
- W2150866110 sameAs 2150866110 @default.
- W2150866110 citedByCount "62" @default.
- W2150866110 countsByYear W21508661102012 @default.
- W2150866110 countsByYear W21508661102013 @default.
- W2150866110 countsByYear W21508661102014 @default.
- W2150866110 countsByYear W21508661102015 @default.
- W2150866110 countsByYear W21508661102016 @default.
- W2150866110 countsByYear W21508661102017 @default.
- W2150866110 countsByYear W21508661102019 @default.
- W2150866110 countsByYear W21508661102020 @default.
- W2150866110 countsByYear W21508661102021 @default.
- W2150866110 countsByYear W21508661102022 @default.
- W2150866110 countsByYear W21508661102023 @default.
- W2150866110 crossrefType "journal-article" @default.
- W2150866110 hasAuthorship W2150866110A5040762788 @default.
- W2150866110 hasAuthorship W2150866110A5077683735 @default.
- W2150866110 hasAuthorship W2150866110A5089556888 @default.
- W2150866110 hasConcept C107211472 @default.
- W2150866110 hasConcept C127413603 @default.