Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150953231> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2150953231 abstract "This paper presents the Generalized PopulationBased Sampling (GPBS) approach, which is a generalized version of the Population-Based Sampling (PBS) approach that was developed by the authors of this paper in earlier work. PBS is a Genetic Algorithm (GA) based approach that allows for discrete design optimization under uncertainty and requires a computational cost that is two orders of magnitude lower than the state-of-the-art method that couples the GA with Monte Carlo Sampling (MCS). The PBS approach uses the population-based search of the GA to provide samples that are used in the statistical evaluation of aggregate, uncertain fitness functions. In PBS, while large numbers of samples are accumulated to evaluate the fitness values of “good” designs, the computational cost spent on designs with “poor” fitness is minimal. The main assumption in PBS is that the uncertain parameters associated with the design variables all have Gaussian probability distributions; hence, the probability distributions of aggregate fitness functions are assumed to be Gaussian themselves. This valid assumption is used to impose constraints on estimated probabilities of success of expected values of aggregate fitness functions even when the number of samples accumulated is small, which is usually the case at the beginning of the optimization run. The suggested GPBS approach generalizes the PBS approach by allowing design variables’ uncertain parameters with non-Gaussian probability distributions and by eliminating the normality assumption on the probability distributions of aggregate fitness functions. The GPBS approach combines the concepts of MCS and PBS and imposes constraints on calculated, rather than estimated, probabilities of success of expected values of aggregate fitness functions. In this paper, the probabilistic approaches described above are implemented for reliability-based design of a communication satellite with uncertain component failure rates. NOMENCLATURE c penalty multiplier ( ) E expected value f fitness function g inequality constraint function G uncertain inequality constraint function samples N number of samples ( ) P probability of payload R total payload reliability spacecraft R total spacecraft reliability m std measured standard deviation of aggregate probabilistic function" @default.
- W2150953231 created "2016-06-24" @default.
- W2150953231 creator A5004556362 @default.
- W2150953231 creator A5049238459 @default.
- W2150953231 date "2004-04-19" @default.
- W2150953231 modified "2023-09-25" @default.
- W2150953231 title "Discrete Design Optimization Under Uncertainty: A Generalized Population-Based Sampling Genetic Algorithm" @default.
- W2150953231 cites W1965488904 @default.
- W2150953231 cites W1985424767 @default.
- W2150953231 cites W1989780744 @default.
- W2150953231 cites W2005859809 @default.
- W2150953231 cites W2076121085 @default.
- W2150953231 cites W2129595584 @default.
- W2150953231 cites W2315560388 @default.
- W2150953231 cites W2799929672 @default.
- W2150953231 doi "https://doi.org/10.2514/6.2004-1586" @default.
- W2150953231 hasPublicationYear "2004" @default.
- W2150953231 type Work @default.
- W2150953231 sameAs 2150953231 @default.
- W2150953231 citedByCount "2" @default.
- W2150953231 countsByYear W21509532312012 @default.
- W2150953231 countsByYear W21509532312013 @default.
- W2150953231 crossrefType "proceedings-article" @default.
- W2150953231 hasAuthorship W2150953231A5004556362 @default.
- W2150953231 hasAuthorship W2150953231A5049238459 @default.
- W2150953231 hasConcept C105795698 @default.
- W2150953231 hasConcept C106131492 @default.
- W2150953231 hasConcept C11413529 @default.
- W2150953231 hasConcept C121332964 @default.
- W2150953231 hasConcept C126255220 @default.
- W2150953231 hasConcept C140779682 @default.
- W2150953231 hasConcept C144024400 @default.
- W2150953231 hasConcept C149441793 @default.
- W2150953231 hasConcept C149923435 @default.
- W2150953231 hasConcept C159985019 @default.
- W2150953231 hasConcept C163716315 @default.
- W2150953231 hasConcept C192562407 @default.
- W2150953231 hasConcept C19499675 @default.
- W2150953231 hasConcept C2908647359 @default.
- W2150953231 hasConcept C31972630 @default.
- W2150953231 hasConcept C33923547 @default.
- W2150953231 hasConcept C41008148 @default.
- W2150953231 hasConcept C4679612 @default.
- W2150953231 hasConcept C62520636 @default.
- W2150953231 hasConceptScore W2150953231C105795698 @default.
- W2150953231 hasConceptScore W2150953231C106131492 @default.
- W2150953231 hasConceptScore W2150953231C11413529 @default.
- W2150953231 hasConceptScore W2150953231C121332964 @default.
- W2150953231 hasConceptScore W2150953231C126255220 @default.
- W2150953231 hasConceptScore W2150953231C140779682 @default.
- W2150953231 hasConceptScore W2150953231C144024400 @default.
- W2150953231 hasConceptScore W2150953231C149441793 @default.
- W2150953231 hasConceptScore W2150953231C149923435 @default.
- W2150953231 hasConceptScore W2150953231C159985019 @default.
- W2150953231 hasConceptScore W2150953231C163716315 @default.
- W2150953231 hasConceptScore W2150953231C192562407 @default.
- W2150953231 hasConceptScore W2150953231C19499675 @default.
- W2150953231 hasConceptScore W2150953231C2908647359 @default.
- W2150953231 hasConceptScore W2150953231C31972630 @default.
- W2150953231 hasConceptScore W2150953231C33923547 @default.
- W2150953231 hasConceptScore W2150953231C41008148 @default.
- W2150953231 hasConceptScore W2150953231C4679612 @default.
- W2150953231 hasConceptScore W2150953231C62520636 @default.
- W2150953231 hasLocation W21509532311 @default.
- W2150953231 hasOpenAccess W2150953231 @default.
- W2150953231 hasPrimaryLocation W21509532311 @default.
- W2150953231 hasRelatedWork W181698225 @default.
- W2150953231 hasRelatedWork W196654636 @default.
- W2150953231 hasRelatedWork W1969781626 @default.
- W2150953231 hasRelatedWork W1972913644 @default.
- W2150953231 hasRelatedWork W2005724041 @default.
- W2150953231 hasRelatedWork W2072957840 @default.
- W2150953231 hasRelatedWork W2149877711 @default.
- W2150953231 hasRelatedWork W2334969826 @default.
- W2150953231 hasRelatedWork W3194992132 @default.
- W2150953231 hasRelatedWork W2626148055 @default.
- W2150953231 isParatext "false" @default.
- W2150953231 isRetracted "false" @default.
- W2150953231 magId "2150953231" @default.
- W2150953231 workType "article" @default.