Matches in SemOpenAlex for { <https://semopenalex.org/work/W2150970212> ?p ?o ?g. }
- W2150970212 endingPage "998" @default.
- W2150970212 startingPage "989" @default.
- W2150970212 abstract "With the advent of digital pathology, imaging scientists have begun to develop computerized image analysis algorithms for making diagnostic (disease presence), prognostic (outcome prediction), and theragnostic (choice of therapy) predictions from high resolution images of digitized histopathology. One of the caveats to developing image analysis algorithms for digitized histopathology is the ability to deal with highly dense, information rich datasets; datasets that would overwhelm most computer vision and image processing algorithms. Over the last decade, manifold learning and non-linear dimensionality reduction schemes have emerged as popular and powerful machine learning tools for pattern recognition problems. However, these techniques have thus far been applied primarily to classification and analysis of computer vision problems (e.g., face detection). In this paper, we discuss recent work by a few groups in the application of manifold learning methods to problems in computer aided diagnosis, prognosis, and theragnosis of digitized histopathology. In addition, we discuss some exciting recent developments in the application of these methods for multi-modal data fusion and classification; specifically the building of meta-classifiers by fusion of histological image and proteomic signatures for prostate cancer outcome prediction." @default.
- W2150970212 created "2016-06-24" @default.
- W2150970212 creator A5027642699 @default.
- W2150970212 creator A5028140714 @default.
- W2150970212 creator A5031173928 @default.
- W2150970212 creator A5039803568 @default.
- W2150970212 creator A5054230830 @default.
- W2150970212 creator A5059777037 @default.
- W2150970212 creator A5069155531 @default.
- W2150970212 creator A5086084312 @default.
- W2150970212 date "2010-05-23" @default.
- W2150970212 modified "2023-10-18" @default.
- W2150970212 title "Integrated diagnostics: a conceptual framework with examples" @default.
- W2150970212 cites W1550295039 @default.
- W2150970212 cites W1970580356 @default.
- W2150970212 cites W1993985152 @default.
- W2150970212 cites W1995386082 @default.
- W2150970212 cites W1997895752 @default.
- W2150970212 cites W2012762214 @default.
- W2150970212 cites W2015668472 @default.
- W2150970212 cites W2017975254 @default.
- W2150970212 cites W2040021022 @default.
- W2150970212 cites W2051571087 @default.
- W2150970212 cites W2058292002 @default.
- W2150970212 cites W2061540497 @default.
- W2150970212 cites W2062319679 @default.
- W2150970212 cites W2067622074 @default.
- W2150970212 cites W2097788635 @default.
- W2150970212 cites W2112090702 @default.
- W2150970212 cites W2115044652 @default.
- W2150970212 cites W2123649031 @default.
- W2150970212 cites W2125003829 @default.
- W2150970212 cites W2127594648 @default.
- W2150970212 cites W2132048066 @default.
- W2150970212 cites W2134951874 @default.
- W2150970212 cites W2140604555 @default.
- W2150970212 cites W2141224535 @default.
- W2150970212 cites W2142082953 @default.
- W2150970212 cites W2148633389 @default.
- W2150970212 cites W2148951498 @default.
- W2150970212 cites W2152661346 @default.
- W2150970212 cites W2152993203 @default.
- W2150970212 cites W2153762022 @default.
- W2150970212 cites W2156398782 @default.
- W2150970212 cites W2156761667 @default.
- W2150970212 cites W2159551006 @default.
- W2150970212 cites W2160633263 @default.
- W2150970212 cites W2161951361 @default.
- W2150970212 cites W2163883927 @default.
- W2150970212 cites W3097096317 @default.
- W2150970212 cites W3148981562 @default.
- W2150970212 cites W48715220 @default.
- W2150970212 doi "https://doi.org/10.1515/cclm.2010.193" @default.
- W2150970212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20491597" @default.
- W2150970212 hasPublicationYear "2010" @default.
- W2150970212 type Work @default.
- W2150970212 sameAs 2150970212 @default.
- W2150970212 citedByCount "31" @default.
- W2150970212 countsByYear W21509702122012 @default.
- W2150970212 countsByYear W21509702122013 @default.
- W2150970212 countsByYear W21509702122014 @default.
- W2150970212 countsByYear W21509702122015 @default.
- W2150970212 countsByYear W21509702122016 @default.
- W2150970212 countsByYear W21509702122017 @default.
- W2150970212 countsByYear W21509702122018 @default.
- W2150970212 countsByYear W21509702122020 @default.
- W2150970212 countsByYear W21509702122022 @default.
- W2150970212 countsByYear W21509702122023 @default.
- W2150970212 crossrefType "journal-article" @default.
- W2150970212 hasAuthorship W2150970212A5027642699 @default.
- W2150970212 hasAuthorship W2150970212A5028140714 @default.
- W2150970212 hasAuthorship W2150970212A5031173928 @default.
- W2150970212 hasAuthorship W2150970212A5039803568 @default.
- W2150970212 hasAuthorship W2150970212A5054230830 @default.
- W2150970212 hasAuthorship W2150970212A5059777037 @default.
- W2150970212 hasAuthorship W2150970212A5069155531 @default.
- W2150970212 hasAuthorship W2150970212A5086084312 @default.
- W2150970212 hasConcept C115961682 @default.
- W2150970212 hasConcept C119857082 @default.
- W2150970212 hasConcept C151876577 @default.
- W2150970212 hasConcept C153180895 @default.
- W2150970212 hasConcept C154945302 @default.
- W2150970212 hasConcept C2777522853 @default.
- W2150970212 hasConcept C2779549770 @default.
- W2150970212 hasConcept C41008148 @default.
- W2150970212 hasConcept C69744172 @default.
- W2150970212 hasConcept C70518039 @default.
- W2150970212 hasConcept C9417928 @default.
- W2150970212 hasConceptScore W2150970212C115961682 @default.
- W2150970212 hasConceptScore W2150970212C119857082 @default.
- W2150970212 hasConceptScore W2150970212C151876577 @default.
- W2150970212 hasConceptScore W2150970212C153180895 @default.
- W2150970212 hasConceptScore W2150970212C154945302 @default.
- W2150970212 hasConceptScore W2150970212C2777522853 @default.
- W2150970212 hasConceptScore W2150970212C2779549770 @default.
- W2150970212 hasConceptScore W2150970212C41008148 @default.
- W2150970212 hasConceptScore W2150970212C69744172 @default.
- W2150970212 hasConceptScore W2150970212C70518039 @default.