Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151093095> ?p ?o ?g. }
- W2151093095 abstract "Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 10(6) viable cells/cm(3). The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na(+) - a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes." @default.
- W2151093095 created "2016-06-24" @default.
- W2151093095 creator A5020505470 @default.
- W2151093095 creator A5033917147 @default.
- W2151093095 creator A5080914282 @default.
- W2151093095 date "2011-01-01" @default.
- W2151093095 modified "2023-10-14" @default.
- W2151093095 title "The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes" @default.
- W2151093095 cites W102735116 @default.
- W2151093095 cites W152889797 @default.
- W2151093095 cites W154148086 @default.
- W2151093095 cites W1869860973 @default.
- W2151093095 cites W1906313944 @default.
- W2151093095 cites W1908317777 @default.
- W2151093095 cites W1916490579 @default.
- W2151093095 cites W1973518811 @default.
- W2151093095 cites W1978921641 @default.
- W2151093095 cites W1983829201 @default.
- W2151093095 cites W1986760660 @default.
- W2151093095 cites W1991503802 @default.
- W2151093095 cites W1998094921 @default.
- W2151093095 cites W2002236015 @default.
- W2151093095 cites W2002592451 @default.
- W2151093095 cites W2006542195 @default.
- W2151093095 cites W2019801596 @default.
- W2151093095 cites W2026405272 @default.
- W2151093095 cites W2039014321 @default.
- W2151093095 cites W2040740172 @default.
- W2151093095 cites W2096709560 @default.
- W2151093095 cites W2097250648 @default.
- W2151093095 cites W2097707773 @default.
- W2151093095 cites W2102021856 @default.
- W2151093095 cites W2104049726 @default.
- W2151093095 cites W2106713041 @default.
- W2151093095 cites W2112323334 @default.
- W2151093095 cites W2113229673 @default.
- W2151093095 cites W2113513236 @default.
- W2151093095 cites W2113745172 @default.
- W2151093095 cites W2116361840 @default.
- W2151093095 cites W2121404609 @default.
- W2151093095 cites W2127596825 @default.
- W2151093095 cites W2129348272 @default.
- W2151093095 cites W2132560726 @default.
- W2151093095 cites W2133005075 @default.
- W2151093095 cites W2133024321 @default.
- W2151093095 cites W2133589652 @default.
- W2151093095 cites W2134928000 @default.
- W2151093095 cites W2138986580 @default.
- W2151093095 cites W2143455867 @default.
- W2151093095 cites W2145526988 @default.
- W2151093095 cites W2148920231 @default.
- W2151093095 cites W2151140419 @default.
- W2151093095 cites W2151628748 @default.
- W2151093095 cites W2155321979 @default.
- W2151093095 cites W2160411974 @default.
- W2151093095 cites W2163169969 @default.
- W2151093095 cites W2167864387 @default.
- W2151093095 cites W2170897776 @default.
- W2151093095 cites W2171915687 @default.
- W2151093095 cites W220258831 @default.
- W2151093095 cites W2437360947 @default.
- W2151093095 cites W2475596049 @default.
- W2151093095 cites W317130471 @default.
- W2151093095 cites W2526053772 @default.
- W2151093095 doi "https://doi.org/10.3389/fmicb.2011.00044" @default.
- W2151093095 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3128939" @default.
- W2151093095 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21747784" @default.
- W2151093095 hasPublicationYear "2011" @default.
- W2151093095 type Work @default.
- W2151093095 sameAs 2151093095 @default.
- W2151093095 citedByCount "144" @default.
- W2151093095 countsByYear W21510930952012 @default.
- W2151093095 countsByYear W21510930952013 @default.
- W2151093095 countsByYear W21510930952014 @default.
- W2151093095 countsByYear W21510930952015 @default.
- W2151093095 countsByYear W21510930952016 @default.
- W2151093095 countsByYear W21510930952017 @default.
- W2151093095 countsByYear W21510930952018 @default.
- W2151093095 countsByYear W21510930952019 @default.
- W2151093095 countsByYear W21510930952020 @default.
- W2151093095 countsByYear W21510930952021 @default.
- W2151093095 countsByYear W21510930952022 @default.
- W2151093095 countsByYear W21510930952023 @default.
- W2151093095 crossrefType "journal-article" @default.
- W2151093095 hasAuthorship W2151093095A5020505470 @default.
- W2151093095 hasAuthorship W2151093095A5033917147 @default.
- W2151093095 hasAuthorship W2151093095A5080914282 @default.
- W2151093095 hasBestOaLocation W21510930951 @default.
- W2151093095 hasConcept C107872376 @default.
- W2151093095 hasConcept C129513315 @default.
- W2151093095 hasConcept C151730666 @default.
- W2151093095 hasConcept C178790620 @default.
- W2151093095 hasConcept C179104552 @default.
- W2151093095 hasConcept C185592680 @default.
- W2151093095 hasConcept C18903297 @default.
- W2151093095 hasConcept C2776294642 @default.
- W2151093095 hasConcept C2776989901 @default.
- W2151093095 hasConcept C42062724 @default.
- W2151093095 hasConcept C518881349 @default.
- W2151093095 hasConcept C523546767 @default.