Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151098983> ?p ?o ?g. }
- W2151098983 endingPage "ii148" @default.
- W2151098983 startingPage "ii138" @default.
- W2151098983 abstract "This article deals with the identification of gene regulatory networks from experimental data using a statistical machine learning approach. A stochastic model of gene interactions capable of handling missing variables is proposed. It can be described as a dynamic Bayesian network particularly well suited to tackle the stochastic nature of gene regulation and gene expression measurement. Parameters of the model are learned through a penalized likelihood maximization implemented through an extended version of EM algorithm. Our approach is tested against experimental data relative to the S.O.S. DNA Repair network of the Escherichia coli bacterium. It appears to be able to extract the main regulations between the genes involved in this network. An added missing variable is found to model the main protein of the network. Good prediction abilities on unlearned data are observed. These first results are very promising: they show the power of the learning algorithm and the ability of the model to capture gene interactions." @default.
- W2151098983 created "2016-06-24" @default.
- W2151098983 creator A5018614433 @default.
- W2151098983 creator A5040658520 @default.
- W2151098983 creator A5042007051 @default.
- W2151098983 creator A5066766964 @default.
- W2151098983 creator A5082325123 @default.
- W2151098983 creator A5089435320 @default.
- W2151098983 date "2003-09-27" @default.
- W2151098983 modified "2023-10-17" @default.
- W2151098983 title "Gene networks inference using dynamic Bayesian networks" @default.
- W2151098983 cites W103930971 @default.
- W2151098983 cites W1486632395 @default.
- W2151098983 cites W1497274060 @default.
- W2151098983 cites W1604345445 @default.
- W2151098983 cites W1978319180 @default.
- W2151098983 cites W1981025032 @default.
- W2151098983 cites W1996264210 @default.
- W2151098983 cites W2049633694 @default.
- W2151098983 cites W2061280979 @default.
- W2151098983 cites W2069898971 @default.
- W2151098983 cites W2097348219 @default.
- W2151098983 cites W2100603120 @default.
- W2151098983 cites W2102716594 @default.
- W2151098983 cites W2110699703 @default.
- W2151098983 cites W2125393150 @default.
- W2151098983 cites W2127337389 @default.
- W2151098983 cites W2142634942 @default.
- W2151098983 cites W2149579404 @default.
- W2151098983 cites W2611370172 @default.
- W2151098983 doi "https://doi.org/10.1093/bioinformatics/btg1071" @default.
- W2151098983 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14534183" @default.
- W2151098983 hasPublicationYear "2003" @default.
- W2151098983 type Work @default.
- W2151098983 sameAs 2151098983 @default.
- W2151098983 citedByCount "358" @default.
- W2151098983 countsByYear W21510989832012 @default.
- W2151098983 countsByYear W21510989832013 @default.
- W2151098983 countsByYear W21510989832014 @default.
- W2151098983 countsByYear W21510989832015 @default.
- W2151098983 countsByYear W21510989832016 @default.
- W2151098983 countsByYear W21510989832017 @default.
- W2151098983 countsByYear W21510989832018 @default.
- W2151098983 countsByYear W21510989832019 @default.
- W2151098983 countsByYear W21510989832020 @default.
- W2151098983 countsByYear W21510989832021 @default.
- W2151098983 countsByYear W21510989832022 @default.
- W2151098983 countsByYear W21510989832023 @default.
- W2151098983 crossrefType "journal-article" @default.
- W2151098983 hasAuthorship W2151098983A5018614433 @default.
- W2151098983 hasAuthorship W2151098983A5040658520 @default.
- W2151098983 hasAuthorship W2151098983A5042007051 @default.
- W2151098983 hasAuthorship W2151098983A5066766964 @default.
- W2151098983 hasAuthorship W2151098983A5082325123 @default.
- W2151098983 hasAuthorship W2151098983A5089435320 @default.
- W2151098983 hasBestOaLocation W21510989831 @default.
- W2151098983 hasConcept C104317684 @default.
- W2151098983 hasConcept C105795698 @default.
- W2151098983 hasConcept C107673813 @default.
- W2151098983 hasConcept C116834253 @default.
- W2151098983 hasConcept C119857082 @default.
- W2151098983 hasConcept C124101348 @default.
- W2151098983 hasConcept C126255220 @default.
- W2151098983 hasConcept C134306372 @default.
- W2151098983 hasConcept C150194340 @default.
- W2151098983 hasConcept C154945302 @default.
- W2151098983 hasConcept C160234255 @default.
- W2151098983 hasConcept C182081679 @default.
- W2151098983 hasConcept C182365436 @default.
- W2151098983 hasConcept C2776214188 @default.
- W2151098983 hasConcept C2776330181 @default.
- W2151098983 hasConcept C33724603 @default.
- W2151098983 hasConcept C33923547 @default.
- W2151098983 hasConcept C41008148 @default.
- W2151098983 hasConcept C49781872 @default.
- W2151098983 hasConcept C54355233 @default.
- W2151098983 hasConcept C59822182 @default.
- W2151098983 hasConcept C67339327 @default.
- W2151098983 hasConcept C82142266 @default.
- W2151098983 hasConcept C86803240 @default.
- W2151098983 hasConceptScore W2151098983C104317684 @default.
- W2151098983 hasConceptScore W2151098983C105795698 @default.
- W2151098983 hasConceptScore W2151098983C107673813 @default.
- W2151098983 hasConceptScore W2151098983C116834253 @default.
- W2151098983 hasConceptScore W2151098983C119857082 @default.
- W2151098983 hasConceptScore W2151098983C124101348 @default.
- W2151098983 hasConceptScore W2151098983C126255220 @default.
- W2151098983 hasConceptScore W2151098983C134306372 @default.
- W2151098983 hasConceptScore W2151098983C150194340 @default.
- W2151098983 hasConceptScore W2151098983C154945302 @default.
- W2151098983 hasConceptScore W2151098983C160234255 @default.
- W2151098983 hasConceptScore W2151098983C182081679 @default.
- W2151098983 hasConceptScore W2151098983C182365436 @default.
- W2151098983 hasConceptScore W2151098983C2776214188 @default.
- W2151098983 hasConceptScore W2151098983C2776330181 @default.
- W2151098983 hasConceptScore W2151098983C33724603 @default.
- W2151098983 hasConceptScore W2151098983C33923547 @default.
- W2151098983 hasConceptScore W2151098983C41008148 @default.