Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151221869> ?p ?o ?g. }
- W2151221869 endingPage "2212" @default.
- W2151221869 startingPage "2196" @default.
- W2151221869 abstract "The granular appearance of speckle noise in synthetic aperture radar (SAR) imagery makes it very difficult to visually and automatically interpret SAR data. Therefore, speckle reduction is a prerequisite for many SAR image processing tasks. In this paper, we develop a speckle reduction algorithm by fusing the wavelet Bayesian denoising technique with Markov-random-field-based image regularization. Wavelet coefficients are modeled independently and identically by a two-state Gaussian mixture model, while their spatial dependence is characterized by a Markov random field imposed on the hidden state of Gaussian mixtures. The Expectation-Maximization algorithm is used to estimate hyperparameters and specify the mixture model, and the iterated-conditional-modes method is implemented to optimize the state configuration. The noise-free wavelet coefficients are finally estimated by a shrinkage function based on local weighted averaging of the Bayesian estimator. Experimental results show that the proposed method outperforms standard wavelet denoising techniques in terms of the signal-to-noise ratio and the equivalent-number-of-looks measures in most cases. It also achieves better performance than the refined Lee filter." @default.
- W2151221869 created "2016-06-24" @default.
- W2151221869 creator A5007747177 @default.
- W2151221869 creator A5046704757 @default.
- W2151221869 creator A5054946020 @default.
- W2151221869 date "2002-01-01" @default.
- W2151221869 modified "2023-10-02" @default.
- W2151221869 title "SAR speckle reduction using wavelet denoising and Markov random field modeling" @default.
- W2151221869 cites W1507028917 @default.
- W2151221869 cites W1653130573 @default.
- W2151221869 cites W1775729916 @default.
- W2151221869 cites W1977309372 @default.
- W2151221869 cites W1981367467 @default.
- W2151221869 cites W1985424411 @default.
- W2151221869 cites W1990881969 @default.
- W2151221869 cites W1992727591 @default.
- W2151221869 cites W1993472818 @default.
- W2151221869 cites W2020880265 @default.
- W2151221869 cites W2036524212 @default.
- W2151221869 cites W2049909233 @default.
- W2151221869 cites W2061052441 @default.
- W2151221869 cites W2062960394 @default.
- W2151221869 cites W2065391104 @default.
- W2151221869 cites W2077023995 @default.
- W2151221869 cites W2096017665 @default.
- W2151221869 cites W2096433476 @default.
- W2151221869 cites W2099864919 @default.
- W2151221869 cites W2102150301 @default.
- W2151221869 cites W2106200738 @default.
- W2151221869 cites W2117294245 @default.
- W2151221869 cites W2125527601 @default.
- W2151221869 cites W2128033169 @default.
- W2151221869 cites W2132984323 @default.
- W2151221869 cites W2133290590 @default.
- W2151221869 cites W2133954466 @default.
- W2151221869 cites W2134929491 @default.
- W2151221869 cites W2139122292 @default.
- W2151221869 cites W2139282590 @default.
- W2151221869 cites W2146842127 @default.
- W2151221869 cites W2149925139 @default.
- W2151221869 cites W2150737937 @default.
- W2151221869 cites W2158347164 @default.
- W2151221869 cites W2161736181 @default.
- W2151221869 cites W2163612361 @default.
- W2151221869 cites W256254973 @default.
- W2151221869 cites W4214806317 @default.
- W2151221869 cites W4255272544 @default.
- W2151221869 cites W59771946 @default.
- W2151221869 doi "https://doi.org/10.1109/tgrs.2002.802473" @default.
- W2151221869 hasPublicationYear "2002" @default.
- W2151221869 type Work @default.
- W2151221869 sameAs 2151221869 @default.
- W2151221869 citedByCount "357" @default.
- W2151221869 countsByYear W21512218692012 @default.
- W2151221869 countsByYear W21512218692013 @default.
- W2151221869 countsByYear W21512218692014 @default.
- W2151221869 countsByYear W21512218692015 @default.
- W2151221869 countsByYear W21512218692016 @default.
- W2151221869 countsByYear W21512218692017 @default.
- W2151221869 countsByYear W21512218692018 @default.
- W2151221869 countsByYear W21512218692019 @default.
- W2151221869 countsByYear W21512218692020 @default.
- W2151221869 countsByYear W21512218692021 @default.
- W2151221869 countsByYear W21512218692022 @default.
- W2151221869 countsByYear W21512218692023 @default.
- W2151221869 crossrefType "journal-article" @default.
- W2151221869 hasAuthorship W2151221869A5007747177 @default.
- W2151221869 hasAuthorship W2151221869A5046704757 @default.
- W2151221869 hasAuthorship W2151221869A5054946020 @default.
- W2151221869 hasConcept C102290492 @default.
- W2151221869 hasConcept C11413529 @default.
- W2151221869 hasConcept C115961682 @default.
- W2151221869 hasConcept C124504099 @default.
- W2151221869 hasConcept C153180895 @default.
- W2151221869 hasConcept C154945302 @default.
- W2151221869 hasConcept C163294075 @default.
- W2151221869 hasConcept C180940675 @default.
- W2151221869 hasConcept C2778045648 @default.
- W2151221869 hasConcept C33923547 @default.
- W2151221869 hasConcept C41008148 @default.
- W2151221869 hasConcept C47432892 @default.
- W2151221869 hasConcept C87360688 @default.
- W2151221869 hasConceptScore W2151221869C102290492 @default.
- W2151221869 hasConceptScore W2151221869C11413529 @default.
- W2151221869 hasConceptScore W2151221869C115961682 @default.
- W2151221869 hasConceptScore W2151221869C124504099 @default.
- W2151221869 hasConceptScore W2151221869C153180895 @default.
- W2151221869 hasConceptScore W2151221869C154945302 @default.
- W2151221869 hasConceptScore W2151221869C163294075 @default.
- W2151221869 hasConceptScore W2151221869C180940675 @default.
- W2151221869 hasConceptScore W2151221869C2778045648 @default.
- W2151221869 hasConceptScore W2151221869C33923547 @default.
- W2151221869 hasConceptScore W2151221869C41008148 @default.
- W2151221869 hasConceptScore W2151221869C47432892 @default.
- W2151221869 hasConceptScore W2151221869C87360688 @default.
- W2151221869 hasIssue "10" @default.
- W2151221869 hasLocation W21512218691 @default.
- W2151221869 hasOpenAccess W2151221869 @default.