Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151308458> ?p ?o ?g. }
- W2151308458 endingPage "25" @default.
- W2151308458 startingPage "25" @default.
- W2151308458 abstract "GWAS owe their popularity to the expectation that they will make a major impact on diagnosis, prognosis and management of disease by uncovering genetics underlying clinical phenotypes. The dominant paradigm in GWAS data analysis so far consists of extensive reliance on methods that emphasize contribution of individual SNPs to statistical association with phenotypes. Multivariate methods, however, can extract more information by considering associations of multiple SNPs simultaneously. Recent advances in other genomics domains pinpoint multivariate causal graph-based inference as a promising principled analysis framework for high-throughput data. Designed to discover biomarkers in the local causal pathway of the phenotype, these methods lead to accurate and highly parsimonious multivariate predictive models. In this paper, we investigate the applicability of causal graph-based method TIE* to analysis of GWAS data. To test the utility of TIE*, we focus on anti-CCP positive rheumatoid arthritis (RA) GWAS datasets, where there is a general consensus in the community about the major genetic determinants of the disease. Application of TIE* to the North American Rheumatoid Arthritis Cohort (NARAC) GWAS data results in six SNPs, mostly from the MHC locus. Using these SNPs we develop two predictive models that can classify cases and disease-free controls with an accuracy of 0.81 area under the ROC curve, as verified in independent testing data from the same cohort. The predictive performance of these models generalizes reasonably well to Swedish subjects from the closely related but not identical Epidemiological Investigation of Rheumatoid Arthritis (EIRA) cohort with 0.71-0.78 area under the ROC curve. Moreover, the SNPs identified by the TIE* method render many other previously known SNP associations conditionally independent of the phenotype. Our experiments demonstrate that application of TIE* captures maximum amount of genetic information about RA in the data and recapitulates the major consensus findings about the genetic factors of this disease. In addition, TIE* yields reproducible markers and signatures of RA. This suggests that principled multivariate causal and predictive framework for GWAS analysis empowers the community with a new tool for high-quality and more efficient discovery. This article was reviewed by Prof. Anthony Almudevar, Dr. Eugene V. Koonin, and Prof. Marianthi Markatou." @default.
- W2151308458 created "2016-06-24" @default.
- W2151308458 creator A5014960492 @default.
- W2151308458 creator A5018005178 @default.
- W2151308458 creator A5027728817 @default.
- W2151308458 creator A5054631805 @default.
- W2151308458 creator A5070422112 @default.
- W2151308458 creator A5071614104 @default.
- W2151308458 creator A5075226492 @default.
- W2151308458 date "2011-01-01" @default.
- W2151308458 modified "2023-10-06" @default.
- W2151308458 title "Causal graph-based analysis of genome-wide association data in rheumatoid arthritis" @default.
- W2151308458 cites W140777655 @default.
- W2151308458 cites W149574399 @default.
- W2151308458 cites W1510073064 @default.
- W2151308458 cites W1521843029 @default.
- W2151308458 cites W1524326598 @default.
- W2151308458 cites W1554944419 @default.
- W2151308458 cites W1704669313 @default.
- W2151308458 cites W1877160699 @default.
- W2151308458 cites W1899161704 @default.
- W2151308458 cites W1971278063 @default.
- W2151308458 cites W1978414516 @default.
- W2151308458 cites W1984241576 @default.
- W2151308458 cites W1990925462 @default.
- W2151308458 cites W1999946766 @default.
- W2151308458 cites W2025408360 @default.
- W2151308458 cites W2025938145 @default.
- W2151308458 cites W2035036601 @default.
- W2151308458 cites W2042308063 @default.
- W2151308458 cites W2046812189 @default.
- W2151308458 cites W2072372077 @default.
- W2151308458 cites W2073747823 @default.
- W2151308458 cites W2080828514 @default.
- W2151308458 cites W2085697527 @default.
- W2151308458 cites W2087025987 @default.
- W2151308458 cites W2087113932 @default.
- W2151308458 cites W2091469533 @default.
- W2151308458 cites W2099950120 @default.
- W2151308458 cites W2100094988 @default.
- W2151308458 cites W2102864522 @default.
- W2151308458 cites W2107956883 @default.
- W2151308458 cites W2109103446 @default.
- W2151308458 cites W2115358726 @default.
- W2151308458 cites W2115783720 @default.
- W2151308458 cites W2117446594 @default.
- W2151308458 cites W2118685291 @default.
- W2151308458 cites W2119428238 @default.
- W2151308458 cites W2120450109 @default.
- W2151308458 cites W2126009609 @default.
- W2151308458 cites W2128952811 @default.
- W2151308458 cites W2131063757 @default.
- W2151308458 cites W2132402446 @default.
- W2151308458 cites W2133091666 @default.
- W2151308458 cites W2138874493 @default.
- W2151308458 cites W2143891888 @default.
- W2151308458 cites W2153370481 @default.
- W2151308458 cites W2159080219 @default.
- W2151308458 cites W2162276444 @default.
- W2151308458 cites W2171565287 @default.
- W2151308458 cites W2242514529 @default.
- W2151308458 cites W2271473378 @default.
- W2151308458 cites W2328176404 @default.
- W2151308458 cites W2407408817 @default.
- W2151308458 cites W2496518686 @default.
- W2151308458 cites W2963429013 @default.
- W2151308458 cites W3132891195 @default.
- W2151308458 cites W3133236490 @default.
- W2151308458 doi "https://doi.org/10.1186/1745-6150-6-25" @default.
- W2151308458 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3118953" @default.
- W2151308458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21592391" @default.
- W2151308458 hasPublicationYear "2011" @default.
- W2151308458 type Work @default.
- W2151308458 sameAs 2151308458 @default.
- W2151308458 citedByCount "21" @default.
- W2151308458 countsByYear W21513084582012 @default.
- W2151308458 countsByYear W21513084582013 @default.
- W2151308458 countsByYear W21513084582014 @default.
- W2151308458 countsByYear W21513084582015 @default.
- W2151308458 countsByYear W21513084582016 @default.
- W2151308458 countsByYear W21513084582017 @default.
- W2151308458 countsByYear W21513084582018 @default.
- W2151308458 countsByYear W21513084582020 @default.
- W2151308458 countsByYear W21513084582022 @default.
- W2151308458 crossrefType "journal-article" @default.
- W2151308458 hasAuthorship W2151308458A5014960492 @default.
- W2151308458 hasAuthorship W2151308458A5018005178 @default.
- W2151308458 hasAuthorship W2151308458A5027728817 @default.
- W2151308458 hasAuthorship W2151308458A5054631805 @default.
- W2151308458 hasAuthorship W2151308458A5070422112 @default.
- W2151308458 hasAuthorship W2151308458A5071614104 @default.
- W2151308458 hasAuthorship W2151308458A5075226492 @default.
- W2151308458 hasBestOaLocation W21513084581 @default.
- W2151308458 hasConcept C104317684 @default.
- W2151308458 hasConcept C106208931 @default.
- W2151308458 hasConcept C119857082 @default.
- W2151308458 hasConcept C126322002 @default.
- W2151308458 hasConcept C135763542 @default.