Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151566994> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2151566994 endingPage "351" @default.
- W2151566994 startingPage "340" @default.
- W2151566994 abstract "Since their introduction, ranking SVM models [11] have become a powerful tool for training content-based retrieval systems. All we need for training a model are retrieval examples in the form of triplet constraints, i.e. examples specifying that relative to some query, a database item a should be ranked higher than database item b. These types of constraints could be obtained from feedback of users of the retrieval system. Most previous ranking models learn either a global combination of elementary similarity functions or a combination defined with respect to a single database item. Instead, we propose a “coarse to fine” ranking model where given a query we first compute a distribution over “coarse” classes and then use the linear combination that has been optimized for queries of that class. These coarse classes are hidden and need to be induced by the training algorithm. We propose a latent variable ranking model that induces both the latent classes and the weights of the linear combination for each class from ranking triplets. Our experiments over two large image datasets and a text retrieval dataset show the advantages of our model over learning a global combination as well as a combination for each test point (i.e. transductive setting). Furthermore, compared to the transductive approach our model has a clear computational advantages since it does not need to be retrained for each test query." @default.
- W2151566994 created "2016-06-24" @default.
- W2151566994 creator A5017254485 @default.
- W2151566994 creator A5020877978 @default.
- W2151566994 creator A5085020955 @default.
- W2151566994 date "2012-01-01" @default.
- W2151566994 modified "2023-09-25" @default.
- W2151566994 title "A Latent Variable Ranking Model for Content-Based Retrieval" @default.
- W2151566994 cites W1982522767 @default.
- W2151566994 cites W2047092297 @default.
- W2151566994 cites W2047221353 @default.
- W2151566994 cites W2056763477 @default.
- W2151566994 cites W2090561883 @default.
- W2151566994 cites W2096100960 @default.
- W2151566994 cites W2128638437 @default.
- W2151566994 cites W2129156852 @default.
- W2151566994 cites W2133566592 @default.
- W2151566994 cites W2142623206 @default.
- W2151566994 cites W2157487986 @default.
- W2151566994 cites W2161969291 @default.
- W2151566994 cites W2165828254 @default.
- W2151566994 doi "https://doi.org/10.1007/978-3-642-28997-2_29" @default.
- W2151566994 hasPublicationYear "2012" @default.
- W2151566994 type Work @default.
- W2151566994 sameAs 2151566994 @default.
- W2151566994 citedByCount "0" @default.
- W2151566994 crossrefType "book-chapter" @default.
- W2151566994 hasAuthorship W2151566994A5017254485 @default.
- W2151566994 hasAuthorship W2151566994A5020877978 @default.
- W2151566994 hasAuthorship W2151566994A5085020955 @default.
- W2151566994 hasBestOaLocation W21515669942 @default.
- W2151566994 hasConcept C103278499 @default.
- W2151566994 hasConcept C115961682 @default.
- W2151566994 hasConcept C119857082 @default.
- W2151566994 hasConcept C124975894 @default.
- W2151566994 hasConcept C134306372 @default.
- W2151566994 hasConcept C154945302 @default.
- W2151566994 hasConcept C182365436 @default.
- W2151566994 hasConcept C189430467 @default.
- W2151566994 hasConcept C23123220 @default.
- W2151566994 hasConcept C2777212361 @default.
- W2151566994 hasConcept C33923547 @default.
- W2151566994 hasConcept C41008148 @default.
- W2151566994 hasConceptScore W2151566994C103278499 @default.
- W2151566994 hasConceptScore W2151566994C115961682 @default.
- W2151566994 hasConceptScore W2151566994C119857082 @default.
- W2151566994 hasConceptScore W2151566994C124975894 @default.
- W2151566994 hasConceptScore W2151566994C134306372 @default.
- W2151566994 hasConceptScore W2151566994C154945302 @default.
- W2151566994 hasConceptScore W2151566994C182365436 @default.
- W2151566994 hasConceptScore W2151566994C189430467 @default.
- W2151566994 hasConceptScore W2151566994C23123220 @default.
- W2151566994 hasConceptScore W2151566994C2777212361 @default.
- W2151566994 hasConceptScore W2151566994C33923547 @default.
- W2151566994 hasConceptScore W2151566994C41008148 @default.
- W2151566994 hasLocation W21515669941 @default.
- W2151566994 hasLocation W21515669942 @default.
- W2151566994 hasOpenAccess W2151566994 @default.
- W2151566994 hasPrimaryLocation W21515669941 @default.
- W2151566994 hasRelatedWork W1527260130 @default.
- W2151566994 hasRelatedWork W1601713026 @default.
- W2151566994 hasRelatedWork W2021630848 @default.
- W2151566994 hasRelatedWork W2031812225 @default.
- W2151566994 hasRelatedWork W2069238515 @default.
- W2151566994 hasRelatedWork W2099421013 @default.
- W2151566994 hasRelatedWork W2525658000 @default.
- W2151566994 hasRelatedWork W2974774628 @default.
- W2151566994 hasRelatedWork W3001149962 @default.
- W2151566994 hasRelatedWork W4297816538 @default.
- W2151566994 isParatext "false" @default.
- W2151566994 isRetracted "false" @default.
- W2151566994 magId "2151566994" @default.
- W2151566994 workType "book-chapter" @default.