Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151924106> ?p ?o ?g. }
- W2151924106 endingPage "362" @default.
- W2151924106 startingPage "355" @default.
- W2151924106 abstract "An empirical method of sample size determination for building prediction models was proposed recently. Permutation method which is used in this procedure is a commonly used method to address the problem of overfitting during cross-validation while evaluating the performance of prediction models constructed from microarray data. But major drawback of such methods which include bootstrapping and full permutations is prohibitively high cost of computation required for calculating the sample size. In this paper, we propose that a single representative null distribution can be used instead of a full permutation by using both simulated and real data sets. During simulation, we have used a dataset with zero effect size and confirmed that the empirical type I error approaches to 0.05. Hence this method can be confidently applied to reduce overfitting problem during cross-validation. We have observed that pilot data set generated by random sampling from real data could be successfully used for sample size determination. We present our results using an experiment that was repeated for 300 times while producing results comparable to that of full permutation method. Since we eliminate full permutation, sample size estimation time is not a function of pilot data size. In our experiment we have observed that this process takes around 30min. With the increasing number of clinical studies, developing efficient sample size determination methods for building prediction models is critical. But empirical methods using bootstrap and permutation usually involve high computing costs. In this study, we propose a method that can reduce required computing time drastically by using representative null distribution of permutations. We use data from pilot experiments to apply this method for designing clinical studies efficiently for high throughput data." @default.
- W2151924106 created "2016-06-24" @default.
- W2151924106 creator A5003283147 @default.
- W2151924106 creator A5009084505 @default.
- W2151924106 creator A5009861775 @default.
- W2151924106 creator A5015532769 @default.
- W2151924106 creator A5023554560 @default.
- W2151924106 creator A5025666748 @default.
- W2151924106 creator A5038871636 @default.
- W2151924106 creator A5054018959 @default.
- W2151924106 creator A5054502235 @default.
- W2151924106 creator A5069640431 @default.
- W2151924106 creator A5086615155 @default.
- W2151924106 date "2015-02-01" @default.
- W2151924106 modified "2023-09-30" @default.
- W2151924106 title "Practical approach to determine sample size for building logistic prediction models using high-throughput data" @default.
- W2151924106 cites W2017411281 @default.
- W2151924106 cites W2051605894 @default.
- W2151924106 cites W2055552685 @default.
- W2151924106 cites W2077359776 @default.
- W2151924106 cites W2101386839 @default.
- W2151924106 cites W2105882193 @default.
- W2151924106 cites W2107755074 @default.
- W2151924106 cites W2116629264 @default.
- W2151924106 cites W2128909276 @default.
- W2151924106 cites W2129571249 @default.
- W2151924106 cites W2145229405 @default.
- W2151924106 cites W2150028354 @default.
- W2151924106 cites W2155423555 @default.
- W2151924106 doi "https://doi.org/10.1016/j.jbi.2014.12.010" @default.
- W2151924106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25555898" @default.
- W2151924106 hasPublicationYear "2015" @default.
- W2151924106 type Work @default.
- W2151924106 sameAs 2151924106 @default.
- W2151924106 citedByCount "4" @default.
- W2151924106 countsByYear W21519241062018 @default.
- W2151924106 countsByYear W21519241062019 @default.
- W2151924106 countsByYear W21519241062020 @default.
- W2151924106 countsByYear W21519241062022 @default.
- W2151924106 crossrefType "journal-article" @default.
- W2151924106 hasAuthorship W2151924106A5003283147 @default.
- W2151924106 hasAuthorship W2151924106A5009084505 @default.
- W2151924106 hasAuthorship W2151924106A5009861775 @default.
- W2151924106 hasAuthorship W2151924106A5015532769 @default.
- W2151924106 hasAuthorship W2151924106A5023554560 @default.
- W2151924106 hasAuthorship W2151924106A5025666748 @default.
- W2151924106 hasAuthorship W2151924106A5038871636 @default.
- W2151924106 hasAuthorship W2151924106A5054018959 @default.
- W2151924106 hasAuthorship W2151924106A5054502235 @default.
- W2151924106 hasAuthorship W2151924106A5069640431 @default.
- W2151924106 hasAuthorship W2151924106A5086615155 @default.
- W2151924106 hasBestOaLocation W21519241061 @default.
- W2151924106 hasConcept C105795698 @default.
- W2151924106 hasConcept C11413529 @default.
- W2151924106 hasConcept C119857082 @default.
- W2151924106 hasConcept C121332964 @default.
- W2151924106 hasConcept C124101348 @default.
- W2151924106 hasConcept C129848803 @default.
- W2151924106 hasConcept C149782125 @default.
- W2151924106 hasConcept C150921843 @default.
- W2151924106 hasConcept C154945302 @default.
- W2151924106 hasConcept C185592680 @default.
- W2151924106 hasConcept C198531522 @default.
- W2151924106 hasConcept C207609745 @default.
- W2151924106 hasConcept C21308566 @default.
- W2151924106 hasConcept C22019652 @default.
- W2151924106 hasConcept C24890656 @default.
- W2151924106 hasConcept C33923547 @default.
- W2151924106 hasConcept C41008148 @default.
- W2151924106 hasConcept C43617362 @default.
- W2151924106 hasConcept C50644808 @default.
- W2151924106 hasConcept C58489278 @default.
- W2151924106 hasConceptScore W2151924106C105795698 @default.
- W2151924106 hasConceptScore W2151924106C11413529 @default.
- W2151924106 hasConceptScore W2151924106C119857082 @default.
- W2151924106 hasConceptScore W2151924106C121332964 @default.
- W2151924106 hasConceptScore W2151924106C124101348 @default.
- W2151924106 hasConceptScore W2151924106C129848803 @default.
- W2151924106 hasConceptScore W2151924106C149782125 @default.
- W2151924106 hasConceptScore W2151924106C150921843 @default.
- W2151924106 hasConceptScore W2151924106C154945302 @default.
- W2151924106 hasConceptScore W2151924106C185592680 @default.
- W2151924106 hasConceptScore W2151924106C198531522 @default.
- W2151924106 hasConceptScore W2151924106C207609745 @default.
- W2151924106 hasConceptScore W2151924106C21308566 @default.
- W2151924106 hasConceptScore W2151924106C22019652 @default.
- W2151924106 hasConceptScore W2151924106C24890656 @default.
- W2151924106 hasConceptScore W2151924106C33923547 @default.
- W2151924106 hasConceptScore W2151924106C41008148 @default.
- W2151924106 hasConceptScore W2151924106C43617362 @default.
- W2151924106 hasConceptScore W2151924106C50644808 @default.
- W2151924106 hasConceptScore W2151924106C58489278 @default.
- W2151924106 hasFunder F4320322120 @default.
- W2151924106 hasLocation W21519241061 @default.
- W2151924106 hasLocation W21519241062 @default.
- W2151924106 hasOpenAccess W2151924106 @default.
- W2151924106 hasPrimaryLocation W21519241061 @default.
- W2151924106 hasRelatedWork W1964217400 @default.