Matches in SemOpenAlex for { <https://semopenalex.org/work/W2151972015> ?p ?o ?g. }
- W2151972015 endingPage "420" @default.
- W2151972015 startingPage "377" @default.
- W2151972015 abstract "Homotopy Type Theory (HoTT) is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be expected to answer, and find that many of them are not answered by the standard formulation of HoTT as presented in the ‘HoTT Book’. More importantly, the presentation of HoTT given in the HoTT Book is not autonomous since it explicitly depends upon other fields of mathematics, in particular homotopy theory. We give an alternative presentation of HoTT that does not depend upon ideas from other parts of mathematics, and in particular makes no reference to homotopy theory (but is compatible with the homotopy interpretation), and argue that it is a candidate autonomous foundation for mathematics. Our elaboration of HoTT is based on a new interpretation of types as mathematical concepts, which accords with the intensional nature of the type theory. 1 Introduction2 What Is a Foundation for Mathematics? 2.1 A characterization of a foundation for mathematics 2.2 Autonomy3 The Basic Features of Homotopy Type Theory 3.1 The rules 3.2 The basic ways to construct types 3.3 Types as propositions and propositions as types 3.4 Identity 3.5 The homotopy interpretation4 Autonomy of the Standard Presentation?5 The Interpretation of Tokens and Types 5.1 Tokens as mathematical objects? 5.2 Tokens and types as concepts6 Justifying the Elimination Rule for Identity7 The Foundations of Homotopy Type Theory without Homotopy 7.1 Framework 7.2 Semantics 7.3 Metaphysics 7.4 Epistemology 7.5 Methodology8 Possible Objections to this Account 8.1 A constructive foundation for mathematics? 8.2 What are concepts? 8.3 Isn’t this just Brouwerian intuitionism? 8.4 Duplicated objects 8.5 Intensionality and substitution salva veritate9 Conclusion 9.1 Advantages of this foundation" @default.
- W2151972015 created "2016-06-24" @default.
- W2151972015 creator A5006377725 @default.
- W2151972015 creator A5007795271 @default.
- W2151972015 date "2018-06-01" @default.
- W2151972015 modified "2023-10-17" @default.
- W2151972015 title "Does Homotopy Type Theory Provide a Foundation for Mathematics?" @default.
- W2151972015 cites W1971675510 @default.
- W2151972015 cites W1973312452 @default.
- W2151972015 cites W2023427878 @default.
- W2151972015 cites W2028948400 @default.
- W2151972015 cites W2032781678 @default.
- W2151972015 cites W2134718463 @default.
- W2151972015 cites W2148077585 @default.
- W2151972015 cites W2169453831 @default.
- W2151972015 cites W2221380295 @default.
- W2151972015 cites W2323777246 @default.
- W2151972015 cites W2483494328 @default.
- W2151972015 cites W2502162402 @default.
- W2151972015 cites W3102482356 @default.
- W2151972015 cites W4289805266 @default.
- W2151972015 cites W4300703889 @default.
- W2151972015 doi "https://doi.org/10.1093/bjps/axw006" @default.
- W2151972015 hasPublicationYear "2018" @default.
- W2151972015 type Work @default.
- W2151972015 sameAs 2151972015 @default.
- W2151972015 citedByCount "23" @default.
- W2151972015 countsByYear W21519720152016 @default.
- W2151972015 countsByYear W21519720152017 @default.
- W2151972015 countsByYear W21519720152018 @default.
- W2151972015 countsByYear W21519720152019 @default.
- W2151972015 countsByYear W21519720152020 @default.
- W2151972015 countsByYear W21519720152022 @default.
- W2151972015 countsByYear W21519720152023 @default.
- W2151972015 crossrefType "journal-article" @default.
- W2151972015 hasAuthorship W2151972015A5006377725 @default.
- W2151972015 hasAuthorship W2151972015A5007795271 @default.
- W2151972015 hasBestOaLocation W21519720152 @default.
- W2151972015 hasConcept C126838900 @default.
- W2151972015 hasConcept C136119220 @default.
- W2151972015 hasConcept C145420912 @default.
- W2151972015 hasConcept C150275644 @default.
- W2151972015 hasConcept C166957645 @default.
- W2151972015 hasConcept C183140480 @default.
- W2151972015 hasConcept C18903297 @default.
- W2151972015 hasConcept C191752858 @default.
- W2151972015 hasConcept C199360897 @default.
- W2151972015 hasConcept C202444582 @default.
- W2151972015 hasConcept C2777299769 @default.
- W2151972015 hasConcept C2777601897 @default.
- W2151972015 hasConcept C2780801425 @default.
- W2151972015 hasConcept C2780966255 @default.
- W2151972015 hasConcept C33923547 @default.
- W2151972015 hasConcept C35234519 @default.
- W2151972015 hasConcept C41008148 @default.
- W2151972015 hasConcept C527412718 @default.
- W2151972015 hasConcept C5961521 @default.
- W2151972015 hasConcept C71924100 @default.
- W2151972015 hasConcept C86803240 @default.
- W2151972015 hasConcept C93682546 @default.
- W2151972015 hasConcept C95457728 @default.
- W2151972015 hasConceptScore W2151972015C126838900 @default.
- W2151972015 hasConceptScore W2151972015C136119220 @default.
- W2151972015 hasConceptScore W2151972015C145420912 @default.
- W2151972015 hasConceptScore W2151972015C150275644 @default.
- W2151972015 hasConceptScore W2151972015C166957645 @default.
- W2151972015 hasConceptScore W2151972015C183140480 @default.
- W2151972015 hasConceptScore W2151972015C18903297 @default.
- W2151972015 hasConceptScore W2151972015C191752858 @default.
- W2151972015 hasConceptScore W2151972015C199360897 @default.
- W2151972015 hasConceptScore W2151972015C202444582 @default.
- W2151972015 hasConceptScore W2151972015C2777299769 @default.
- W2151972015 hasConceptScore W2151972015C2777601897 @default.
- W2151972015 hasConceptScore W2151972015C2780801425 @default.
- W2151972015 hasConceptScore W2151972015C2780966255 @default.
- W2151972015 hasConceptScore W2151972015C33923547 @default.
- W2151972015 hasConceptScore W2151972015C35234519 @default.
- W2151972015 hasConceptScore W2151972015C41008148 @default.
- W2151972015 hasConceptScore W2151972015C527412718 @default.
- W2151972015 hasConceptScore W2151972015C5961521 @default.
- W2151972015 hasConceptScore W2151972015C71924100 @default.
- W2151972015 hasConceptScore W2151972015C86803240 @default.
- W2151972015 hasConceptScore W2151972015C93682546 @default.
- W2151972015 hasConceptScore W2151972015C95457728 @default.
- W2151972015 hasIssue "2" @default.
- W2151972015 hasLocation W21519720151 @default.
- W2151972015 hasLocation W21519720152 @default.
- W2151972015 hasLocation W21519720153 @default.
- W2151972015 hasOpenAccess W2151972015 @default.
- W2151972015 hasPrimaryLocation W21519720151 @default.
- W2151972015 hasRelatedWork W1981666076 @default.
- W2151972015 hasRelatedWork W1997281768 @default.
- W2151972015 hasRelatedWork W200058515 @default.
- W2151972015 hasRelatedWork W2043828421 @default.
- W2151972015 hasRelatedWork W2963024429 @default.
- W2151972015 hasRelatedWork W4289763238 @default.
- W2151972015 hasRelatedWork W4300009321 @default.
- W2151972015 hasRelatedWork W4301135587 @default.