Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152159617> ?p ?o ?g. }
- W2152159617 endingPage "668" @default.
- W2152159617 startingPage "655" @default.
- W2152159617 abstract "Branch-and-bound methods are used in various data analysis problems, such as clustering, seriation and feature selection. Classical approaches of branch-and-bound based clustering search through combinations of various partitioning possibilities to optimize a clustering cost. However, these approaches are not practically useful for clustering of image data where the size of data is large. Additionally, the number of clusters is unknown in most of the image data analysis problems. By taking advantage of the spatial coherency of clusters, we formulate an innovative branch-and-bound approach, which solves clustering problem as a model-selection problem. In this generalized approach, cluster parameter candidates are first generated by spatially coherent sampling. A branch-and-bound search is carried out through the candidates to select an optimal subset. This paper formulates this approach and investigates its average computational complexity. Improved clustering quality and robustness to outliers compared to conventional iterative approach are demonstrated with experiments." @default.
- W2152159617 created "2016-06-24" @default.
- W2152159617 creator A5015128288 @default.
- W2152159617 creator A5066500435 @default.
- W2152159617 date "2011-05-01" @default.
- W2152159617 modified "2023-10-06" @default.
- W2152159617 title "Branch-and-Bound for Model Selection and Its Computational Complexity" @default.
- W2152159617 cites W1602197575 @default.
- W2152159617 cites W1978117135 @default.
- W2152159617 cites W1990139755 @default.
- W2152159617 cites W2002875082 @default.
- W2152159617 cites W2033819227 @default.
- W2152159617 cites W2043811185 @default.
- W2152159617 cites W2046434485 @default.
- W2152159617 cites W2050731422 @default.
- W2152159617 cites W2051315758 @default.
- W2152159617 cites W2073503732 @default.
- W2152159617 cites W2107391920 @default.
- W2152159617 cites W2108780778 @default.
- W2152159617 cites W2111174809 @default.
- W2152159617 cites W2114129181 @default.
- W2152159617 cites W2115044652 @default.
- W2152159617 cites W2131166538 @default.
- W2152159617 cites W2132710519 @default.
- W2152159617 cites W2146308807 @default.
- W2152159617 cites W2147872071 @default.
- W2152159617 cites W2150475767 @default.
- W2152159617 cites W2153667818 @default.
- W2152159617 cites W2166627447 @default.
- W2152159617 cites W2168175751 @default.
- W2152159617 cites W4212843940 @default.
- W2152159617 doi "https://doi.org/10.1109/tkde.2010.156" @default.
- W2152159617 hasPublicationYear "2011" @default.
- W2152159617 type Work @default.
- W2152159617 sameAs 2152159617 @default.
- W2152159617 citedByCount "32" @default.
- W2152159617 countsByYear W21521596172012 @default.
- W2152159617 countsByYear W21521596172013 @default.
- W2152159617 countsByYear W21521596172014 @default.
- W2152159617 countsByYear W21521596172015 @default.
- W2152159617 countsByYear W21521596172016 @default.
- W2152159617 countsByYear W21521596172017 @default.
- W2152159617 countsByYear W21521596172018 @default.
- W2152159617 countsByYear W21521596172020 @default.
- W2152159617 countsByYear W21521596172021 @default.
- W2152159617 countsByYear W21521596172022 @default.
- W2152159617 countsByYear W21521596172023 @default.
- W2152159617 crossrefType "journal-article" @default.
- W2152159617 hasAuthorship W2152159617A5015128288 @default.
- W2152159617 hasAuthorship W2152159617A5066500435 @default.
- W2152159617 hasBestOaLocation W21521596172 @default.
- W2152159617 hasConcept C104317684 @default.
- W2152159617 hasConcept C11413529 @default.
- W2152159617 hasConcept C124101348 @default.
- W2152159617 hasConcept C149872217 @default.
- W2152159617 hasConcept C153180895 @default.
- W2152159617 hasConcept C154945302 @default.
- W2152159617 hasConcept C179799912 @default.
- W2152159617 hasConcept C185592680 @default.
- W2152159617 hasConcept C27964816 @default.
- W2152159617 hasConcept C33704608 @default.
- W2152159617 hasConcept C41008148 @default.
- W2152159617 hasConcept C55493867 @default.
- W2152159617 hasConcept C63479239 @default.
- W2152159617 hasConcept C73555534 @default.
- W2152159617 hasConcept C79337645 @default.
- W2152159617 hasConcept C81917197 @default.
- W2152159617 hasConcept C93693863 @default.
- W2152159617 hasConcept C94641424 @default.
- W2152159617 hasConceptScore W2152159617C104317684 @default.
- W2152159617 hasConceptScore W2152159617C11413529 @default.
- W2152159617 hasConceptScore W2152159617C124101348 @default.
- W2152159617 hasConceptScore W2152159617C149872217 @default.
- W2152159617 hasConceptScore W2152159617C153180895 @default.
- W2152159617 hasConceptScore W2152159617C154945302 @default.
- W2152159617 hasConceptScore W2152159617C179799912 @default.
- W2152159617 hasConceptScore W2152159617C185592680 @default.
- W2152159617 hasConceptScore W2152159617C27964816 @default.
- W2152159617 hasConceptScore W2152159617C33704608 @default.
- W2152159617 hasConceptScore W2152159617C41008148 @default.
- W2152159617 hasConceptScore W2152159617C55493867 @default.
- W2152159617 hasConceptScore W2152159617C63479239 @default.
- W2152159617 hasConceptScore W2152159617C73555534 @default.
- W2152159617 hasConceptScore W2152159617C79337645 @default.
- W2152159617 hasConceptScore W2152159617C81917197 @default.
- W2152159617 hasConceptScore W2152159617C93693863 @default.
- W2152159617 hasConceptScore W2152159617C94641424 @default.
- W2152159617 hasIssue "5" @default.
- W2152159617 hasLocation W21521596171 @default.
- W2152159617 hasLocation W21521596172 @default.
- W2152159617 hasOpenAccess W2152159617 @default.
- W2152159617 hasPrimaryLocation W21521596171 @default.
- W2152159617 hasRelatedWork W1538188876 @default.
- W2152159617 hasRelatedWork W2025362236 @default.
- W2152159617 hasRelatedWork W2163563073 @default.
- W2152159617 hasRelatedWork W2239559253 @default.
- W2152159617 hasRelatedWork W2398543122 @default.
- W2152159617 hasRelatedWork W2952359145 @default.