Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152179664> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2152179664 endingPage "343" @default.
- W2152179664 startingPage "315" @default.
- W2152179664 abstract "In the past the development of kinetic energy conserving finite-difference methods mostly focused on second-order accurate central methods defined on uniform grids. Nowadays the need for high-order accurate discretizations, to perform for instance accurate numerical simulations of turbulent flow, calls for the development of novel kinetic energy conserving discretization schemes. Instead of choosing a fixed basis discretization up front, in this paper a different, more general, approach is applied. For a Cartesian mesh, sets of conditions are presented such that all discretizations of the linear or non-linear convection equation which obey these conditions, unconditionally conserve kinetic energy. For the linear convection equation it is shown that on a uniform grid it is necessary and sufficient for a discretization to be central in order to be fully conservative, that is: such discretizations not only unconditionally conserve kinetic energy but also unconditionally conserve momentum. On non-uniform grids an algorithm is introduced that can be used to generate fully conservative discretizations that are at least first-order accurate. The derivation of the discretization conditions for the non-linear convection equation is performed in the two-dimensional (2D) linear case. Some examples on uniform grids and on non-uniform grids are presented. It is shown that on uniform grids no upper limit exists with respect to the accuracy of the kinetic energy conserving method. For the higher-dimensional linear and non-linear convection equation the same set of conditions, which ensure the unconditional conservation of kinetic energy, are found as in the 2D linear case. Other results too are found to be straightforward generalizations of the corresponding 2D linear results. It is shown that the fourth-order unconditionally kinetic energy conserving discretization on a staggered mesh introduced in this paper is well suited to simulate the initial development of an inviscid shear layer instability in a divergence-free flow." @default.
- W2152179664 created "2016-06-24" @default.
- W2152179664 creator A5037121668 @default.
- W2152179664 date "2004-02-01" @default.
- W2152179664 modified "2023-09-26" @default.
- W2152179664 title "On unconditional conservation of kinetic energy by finite-difference discretizations of the linear and non-linear convection equation" @default.
- W2152179664 cites W1984565935 @default.
- W2152179664 cites W2035545087 @default.
- W2152179664 cites W2036895361 @default.
- W2152179664 cites W2070363665 @default.
- W2152179664 cites W2097863094 @default.
- W2152179664 cites W2102256082 @default.
- W2152179664 cites W2108726095 @default.
- W2152179664 cites W2138079557 @default.
- W2152179664 cites W4251865999 @default.
- W2152179664 doi "https://doi.org/10.1016/s0045-7930(03)00057-4" @default.
- W2152179664 hasPublicationYear "2004" @default.
- W2152179664 type Work @default.
- W2152179664 sameAs 2152179664 @default.
- W2152179664 citedByCount "19" @default.
- W2152179664 countsByYear W21521796642013 @default.
- W2152179664 countsByYear W21521796642014 @default.
- W2152179664 countsByYear W21521796642015 @default.
- W2152179664 countsByYear W21521796642016 @default.
- W2152179664 countsByYear W21521796642017 @default.
- W2152179664 countsByYear W21521796642018 @default.
- W2152179664 countsByYear W21521796642020 @default.
- W2152179664 countsByYear W21521796642021 @default.
- W2152179664 countsByYear W21521796642022 @default.
- W2152179664 countsByYear W21521796642023 @default.
- W2152179664 crossrefType "journal-article" @default.
- W2152179664 hasAuthorship W2152179664A5037121668 @default.
- W2152179664 hasConcept C121332964 @default.
- W2152179664 hasConcept C134306372 @default.
- W2152179664 hasConcept C135889238 @default.
- W2152179664 hasConcept C157206272 @default.
- W2152179664 hasConcept C158622935 @default.
- W2152179664 hasConcept C181330731 @default.
- W2152179664 hasConcept C205951836 @default.
- W2152179664 hasConcept C28826006 @default.
- W2152179664 hasConcept C33923547 @default.
- W2152179664 hasConcept C3445786 @default.
- W2152179664 hasConcept C57879066 @default.
- W2152179664 hasConcept C62520636 @default.
- W2152179664 hasConcept C73000952 @default.
- W2152179664 hasConcept C74650414 @default.
- W2152179664 hasConceptScore W2152179664C121332964 @default.
- W2152179664 hasConceptScore W2152179664C134306372 @default.
- W2152179664 hasConceptScore W2152179664C135889238 @default.
- W2152179664 hasConceptScore W2152179664C157206272 @default.
- W2152179664 hasConceptScore W2152179664C158622935 @default.
- W2152179664 hasConceptScore W2152179664C181330731 @default.
- W2152179664 hasConceptScore W2152179664C205951836 @default.
- W2152179664 hasConceptScore W2152179664C28826006 @default.
- W2152179664 hasConceptScore W2152179664C33923547 @default.
- W2152179664 hasConceptScore W2152179664C3445786 @default.
- W2152179664 hasConceptScore W2152179664C57879066 @default.
- W2152179664 hasConceptScore W2152179664C62520636 @default.
- W2152179664 hasConceptScore W2152179664C73000952 @default.
- W2152179664 hasConceptScore W2152179664C74650414 @default.
- W2152179664 hasIssue "2" @default.
- W2152179664 hasLocation W21521796641 @default.
- W2152179664 hasOpenAccess W2152179664 @default.
- W2152179664 hasPrimaryLocation W21521796641 @default.
- W2152179664 hasRelatedWork W1583002911 @default.
- W2152179664 hasRelatedWork W2152179664 @default.
- W2152179664 hasRelatedWork W2275119763 @default.
- W2152179664 hasRelatedWork W2476024674 @default.
- W2152179664 hasRelatedWork W2479759870 @default.
- W2152179664 hasRelatedWork W2524982874 @default.
- W2152179664 hasRelatedWork W2963438613 @default.
- W2152179664 hasRelatedWork W3080199442 @default.
- W2152179664 hasRelatedWork W3097780762 @default.
- W2152179664 hasRelatedWork W3208902437 @default.
- W2152179664 hasVolume "33" @default.
- W2152179664 isParatext "false" @default.
- W2152179664 isRetracted "false" @default.
- W2152179664 magId "2152179664" @default.
- W2152179664 workType "article" @default.