Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152201775> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2152201775 abstract "Machine Learning algorithms are difficult to directly apply among data sets of high dimensionality. This paper examines application of hybrid algorithms to segment data models to enable a higher level of accuracy. Our process begins with the reduction of our input parameter sets through the derivation of dominant characteristics. Using these characteristics, ranges are determined in which to segment our model. Each set is then used to train a predictive model using Machine Learning techniques. One major attribute of our application framework is to support an interchangeable set of algorithms for each stage. This process is demonstrated by estimating stated incomes from an automotive financing application for purpose of predictive modeling. We conclude that by applying our segmented hybrid framework we can achieve substantial improvements in accuracy over pure Machine Learning applications." @default.
- W2152201775 created "2016-06-24" @default.
- W2152201775 creator A5027523422 @default.
- W2152201775 date "2009-03-01" @default.
- W2152201775 modified "2023-09-27" @default.
- W2152201775 title "Model segmentation for numerical prediction" @default.
- W2152201775 cites W1514477737 @default.
- W2152201775 cites W1543659671 @default.
- W2152201775 cites W1583833362 @default.
- W2152201775 cites W1979535325 @default.
- W2152201775 cites W1981544055 @default.
- W2152201775 cites W1985624473 @default.
- W2152201775 cites W1999117613 @default.
- W2152201775 cites W2001347427 @default.
- W2152201775 cites W2003634948 @default.
- W2152201775 cites W2022266106 @default.
- W2152201775 cites W2065080511 @default.
- W2152201775 cites W2085575316 @default.
- W2152201775 cites W2105295113 @default.
- W2152201775 cites W2140627010 @default.
- W2152201775 cites W2144307819 @default.
- W2152201775 cites W2149070311 @default.
- W2152201775 cites W2155267750 @default.
- W2152201775 cites W2169618946 @default.
- W2152201775 cites W2171144767 @default.
- W2152201775 cites W2541648889 @default.
- W2152201775 cites W1516016159 @default.
- W2152201775 doi "https://doi.org/10.1109/hima.2009.4937821" @default.
- W2152201775 hasPublicationYear "2009" @default.
- W2152201775 type Work @default.
- W2152201775 sameAs 2152201775 @default.
- W2152201775 citedByCount "0" @default.
- W2152201775 crossrefType "proceedings-article" @default.
- W2152201775 hasAuthorship W2152201775A5027523422 @default.
- W2152201775 hasConcept C111030470 @default.
- W2152201775 hasConcept C111919701 @default.
- W2152201775 hasConcept C11413529 @default.
- W2152201775 hasConcept C119857082 @default.
- W2152201775 hasConcept C124101348 @default.
- W2152201775 hasConcept C127413603 @default.
- W2152201775 hasConcept C146978453 @default.
- W2152201775 hasConcept C154945302 @default.
- W2152201775 hasConcept C177264268 @default.
- W2152201775 hasConcept C199360897 @default.
- W2152201775 hasConcept C41008148 @default.
- W2152201775 hasConcept C45804977 @default.
- W2152201775 hasConcept C526921623 @default.
- W2152201775 hasConcept C58489278 @default.
- W2152201775 hasConcept C70518039 @default.
- W2152201775 hasConcept C89600930 @default.
- W2152201775 hasConcept C98045186 @default.
- W2152201775 hasConceptScore W2152201775C111030470 @default.
- W2152201775 hasConceptScore W2152201775C111919701 @default.
- W2152201775 hasConceptScore W2152201775C11413529 @default.
- W2152201775 hasConceptScore W2152201775C119857082 @default.
- W2152201775 hasConceptScore W2152201775C124101348 @default.
- W2152201775 hasConceptScore W2152201775C127413603 @default.
- W2152201775 hasConceptScore W2152201775C146978453 @default.
- W2152201775 hasConceptScore W2152201775C154945302 @default.
- W2152201775 hasConceptScore W2152201775C177264268 @default.
- W2152201775 hasConceptScore W2152201775C199360897 @default.
- W2152201775 hasConceptScore W2152201775C41008148 @default.
- W2152201775 hasConceptScore W2152201775C45804977 @default.
- W2152201775 hasConceptScore W2152201775C526921623 @default.
- W2152201775 hasConceptScore W2152201775C58489278 @default.
- W2152201775 hasConceptScore W2152201775C70518039 @default.
- W2152201775 hasConceptScore W2152201775C89600930 @default.
- W2152201775 hasConceptScore W2152201775C98045186 @default.
- W2152201775 hasLocation W21522017751 @default.
- W2152201775 hasOpenAccess W2152201775 @default.
- W2152201775 hasPrimaryLocation W21522017751 @default.
- W2152201775 hasRelatedWork W2129093368 @default.
- W2152201775 hasRelatedWork W2184043162 @default.
- W2152201775 hasRelatedWork W256302689 @default.
- W2152201775 hasRelatedWork W2611307339 @default.
- W2152201775 hasRelatedWork W2743786791 @default.
- W2152201775 hasRelatedWork W2771038650 @default.
- W2152201775 hasRelatedWork W2952609122 @default.
- W2152201775 hasRelatedWork W3123566319 @default.
- W2152201775 hasRelatedWork W4226153255 @default.
- W2152201775 hasRelatedWork W4249418736 @default.
- W2152201775 isParatext "false" @default.
- W2152201775 isRetracted "false" @default.
- W2152201775 magId "2152201775" @default.
- W2152201775 workType "article" @default.