Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152321814> ?p ?o ?g. }
- W2152321814 endingPage "388" @default.
- W2152321814 startingPage "361" @default.
- W2152321814 abstract "Compositional gravity current flows produced by the instantaneous release of a finite-volume, heavier lock fluid in a rectangular horizontal plane channel are investigated using large eddy simulation. The first part of the paper focuses on the evolution of Boussinesq lock-exchange gravity currents with a large initial volume of the release during the slumping phase in which the front of the gravity current propagates with constant speed. High-resolution simulations are conducted for Grashof numbers $sqrt {Gr}$ = 3150 (LGR simulation) and $sqrt {Gr}$ = 126000 (HGR simulation). The Grashof number is defined with the channel depth h and the buoyancy velocity u b = $sqrt {g'h}$ ( g ′ is the reduced gravity). In the HGR simulation the flow is turbulent in the regions behind the two fronts. Compared to the LGR simulation, the interfacial billows lose their coherence much more rapidly (over less than 2.5 h behind the front), which results in a much faster decay of the large-scale content and turbulence intensity in the trailing regions of the flow. A slightly tilted, stably stratified interface layer develops away from the two fronts. The concentration profiles across this layer can be approximated by a hyperbolic tangent function. In the HGR simulation the energy budget shows that for t > 18 h / u b the flow reaches a regime in which the total dissipation rate and the rates of change of the total potential and kinetic energies are constant in time. The second part of the paper focuses on the study of the transition of Boussinesq gravity currents with a small initial volume of the release to the buoyancy–inertia self-similar phase. When the existence of the back wall is communicated to the front, the front speed starts to decrease, and the current transitions to the buoyancy–inertia phase. Three high-resolution simulations are performed at Grashof numbers between $sqrt {Gr}$ = 3 × 10 4 and $sqrt {Gr}$ = 9 × 10 4 . Additionally, a calculation at a much higher Grashof number ( $sqrt {Gr}$ = 10 6 ) is performed to understand the behaviour of a bottom-propagating current closer to the inviscid limit. The three-dimensional simulations correctly predict a front speed decrease proportional to t −α (the time t is measured from the release time) over the buoyancy–inertia phase, with the constant α approaching the theoretical value of 1/3 as the current approaches the inviscid limit. At Grashof numbers for which $sqrt {Gr}$ > 3 × 10 4 , the intensity of the turbulence in the near-wall region behind the front is large enough to induce the formation of a region containing streaks of low and high streamwise velocities. The streaks are present well into the buoyancy–inertia phase before the speed of the front decays below values at which the streaks can be sustained. The formation of the velocity streaks induces a streaky distribution of the bed friction velocity in the region immediately behind the front. This distribution becomes finer as the Grashof number increases. For simulations in which the only difference was the value of the Grashof number ( $sqrt {Gr}$ = 4.7 × 10 4 versus $sqrt {Gr}$ = 10 6 ), analysis of the non-dimensional bed friction velocity distributions shows that the capacity of the gravity current to entrain sediment from the bed increases with the Grashof number. Past the later stages of the transition to the buoyancy–inertia phase, the temporal variations of the potential energy, the kinetic energy and the integral of the total dissipation rate are logarithmic." @default.
- W2152321814 created "2016-06-24" @default.
- W2152321814 creator A5079139619 @default.
- W2152321814 creator A5079805503 @default.
- W2152321814 creator A5081409533 @default.
- W2152321814 date "2009-09-10" @default.
- W2152321814 modified "2023-10-08" @default.
- W2152321814 title "Numerical simulations of lock-exchange compositional gravity current" @default.
- W2152321814 cites W1508057788 @default.
- W2152321814 cites W1967446950 @default.
- W2152321814 cites W1983240998 @default.
- W2152321814 cites W1983632146 @default.
- W2152321814 cites W2000581644 @default.
- W2152321814 cites W2003875128 @default.
- W2152321814 cites W2017735666 @default.
- W2152321814 cites W2018934541 @default.
- W2152321814 cites W2029621111 @default.
- W2152321814 cites W2029652334 @default.
- W2152321814 cites W2029992382 @default.
- W2152321814 cites W2062712788 @default.
- W2152321814 cites W2072023396 @default.
- W2152321814 cites W2073673593 @default.
- W2152321814 cites W2074447412 @default.
- W2152321814 cites W2079688117 @default.
- W2152321814 cites W2081836795 @default.
- W2152321814 cites W2082169411 @default.
- W2152321814 cites W2100760293 @default.
- W2152321814 cites W2125945929 @default.
- W2152321814 cites W2133431334 @default.
- W2152321814 cites W2136129772 @default.
- W2152321814 cites W2147157406 @default.
- W2152321814 cites W2147819133 @default.
- W2152321814 cites W2156498905 @default.
- W2152321814 cites W2161433140 @default.
- W2152321814 cites W2164011123 @default.
- W2152321814 cites W2166477378 @default.
- W2152321814 doi "https://doi.org/10.1017/s0022112009007599" @default.
- W2152321814 hasPublicationYear "2009" @default.
- W2152321814 type Work @default.
- W2152321814 sameAs 2152321814 @default.
- W2152321814 citedByCount "106" @default.
- W2152321814 countsByYear W21523218142012 @default.
- W2152321814 countsByYear W21523218142013 @default.
- W2152321814 countsByYear W21523218142014 @default.
- W2152321814 countsByYear W21523218142015 @default.
- W2152321814 countsByYear W21523218142016 @default.
- W2152321814 countsByYear W21523218142017 @default.
- W2152321814 countsByYear W21523218142018 @default.
- W2152321814 countsByYear W21523218142019 @default.
- W2152321814 countsByYear W21523218142020 @default.
- W2152321814 countsByYear W21523218142021 @default.
- W2152321814 countsByYear W21523218142022 @default.
- W2152321814 countsByYear W21523218142023 @default.
- W2152321814 crossrefType "journal-article" @default.
- W2152321814 hasAuthorship W2152321814A5079139619 @default.
- W2152321814 hasAuthorship W2152321814A5079805503 @default.
- W2152321814 hasAuthorship W2152321814A5081409533 @default.
- W2152321814 hasConcept C121332964 @default.
- W2152321814 hasConcept C130230704 @default.
- W2152321814 hasConcept C13027520 @default.
- W2152321814 hasConcept C135402231 @default.
- W2152321814 hasConcept C146864707 @default.
- W2152321814 hasConcept C15476950 @default.
- W2152321814 hasConcept C182748727 @default.
- W2152321814 hasConcept C18533594 @default.
- W2152321814 hasConcept C196558001 @default.
- W2152321814 hasConcept C538625479 @default.
- W2152321814 hasConcept C57879066 @default.
- W2152321814 hasConcept C84482304 @default.
- W2152321814 hasConcept C97355855 @default.
- W2152321814 hasConceptScore W2152321814C121332964 @default.
- W2152321814 hasConceptScore W2152321814C130230704 @default.
- W2152321814 hasConceptScore W2152321814C13027520 @default.
- W2152321814 hasConceptScore W2152321814C135402231 @default.
- W2152321814 hasConceptScore W2152321814C146864707 @default.
- W2152321814 hasConceptScore W2152321814C15476950 @default.
- W2152321814 hasConceptScore W2152321814C182748727 @default.
- W2152321814 hasConceptScore W2152321814C18533594 @default.
- W2152321814 hasConceptScore W2152321814C196558001 @default.
- W2152321814 hasConceptScore W2152321814C538625479 @default.
- W2152321814 hasConceptScore W2152321814C57879066 @default.
- W2152321814 hasConceptScore W2152321814C84482304 @default.
- W2152321814 hasConceptScore W2152321814C97355855 @default.
- W2152321814 hasLocation W21523218141 @default.
- W2152321814 hasOpenAccess W2152321814 @default.
- W2152321814 hasPrimaryLocation W21523218141 @default.
- W2152321814 hasRelatedWork W1990190094 @default.
- W2152321814 hasRelatedWork W2032385033 @default.
- W2152321814 hasRelatedWork W2087946601 @default.
- W2152321814 hasRelatedWork W2123492926 @default.
- W2152321814 hasRelatedWork W2136237024 @default.
- W2152321814 hasRelatedWork W2161926175 @default.
- W2152321814 hasRelatedWork W2177581919 @default.
- W2152321814 hasRelatedWork W2599394473 @default.
- W2152321814 hasRelatedWork W4283751052 @default.
- W2152321814 hasRelatedWork W93071156 @default.
- W2152321814 hasVolume "635" @default.
- W2152321814 isParatext "false" @default.