Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152507413> ?p ?o ?g. }
- W2152507413 abstract "In many areas of science one often has a given matrix, representing for example a measured data set and is required to find a matrix that is closest in a suitable norm to the matrix and possesses additionally a structure,inherited from the model used or coming from the application. We call these problems structured matrix nearness problems. We look at three different groups of these problems that come from real applications, analyze the properties of the corresponding matrix structure, and propose algorithms to solve them efficiently.The first part of this thesis concerns the nearness problem of finding the nearest $k$ factor correlation matrix $C(X) =diag(I_n -XX^T)+XX^T$ to a given symmetric matrix, subject to natural nonlinear constraints on the elements of the $ntimes k$ matrix $X$, where distance is measured in the Frobenius norm.Such problems arise, for example, when one is investigating factor models of collateralized debt obligations (CDOs) or multivariate time series. We examine several algorithms for solving the nearness problem that differ in whether or not they can take account of the nonlinear constraints and in their convergence properties. Our numerical experiments show that the performance of the methods depends strongly on the problem, but that, among our tested methods, the spectral projected gradient method is the clear winner.In the second part we look at two two-sided optimization problems where the matrix of unknowns $YinR^{ntimes p}$ lies in the Stiefel manifold. These two problems come from an application in atomic chemistry where one is looking for atomic orbitals with prescribed occupation numbers. We analyze these two problems, propose an analytic optimal solution of the first and show that an optimal solution of the second problem can be found by solving a convex quadratic programming problem with box constraints and $p$ unknowns. We prove that the latter problem can be solved by the active-set method in at most $2p$ iterations. Subsequently, we analyze the set of optimal solutions $mathcal{C}={YinR^{ntimes p}:Y^TY=I_p, Y^TNY=D}$ of the first problem for $N$ symmetric and $D$ diagonal and find that a slight modification of it is a Riemannian manifold. We derive the geometric objects required to make an optimization over this manifold possible. We propose an augmented Lagrangian-based algorithm that uses these geometric tools and allows us to optimize an arbitrary smooth function over $mathcal{C}$. This algorithm can be used to select a particular solution out of the latter set $mathcal{C}$ by posing a new optimization problem. We compare it numerically with a similar algorithm that,however, does not apply these geometric tools and find that our algorithm yields better performance.The third part is devoted to low rank nearness problems in the $Q$-norm, where the matrix of interest is additionally of linear structure, meaning it lies in the set spanned by $s$ predefined matrices $U_1,ldots, U_sin{0,1}^{ntimes p}$. These problems are often associated with model reduction, for example in speech encoding, filter design, or latent semantic indexing. We investigate three approaches that support any linear structure and examine further the geometric reformulation by Schuermans et al. (2003). We improve their algorithm in terms of reliability by applying the augmented Lagrangian method and show in our numerical tests that the resulting algorithm yields better performance than other existing methods." @default.
- W2152507413 created "2016-06-24" @default.
- W2152507413 creator A5046173664 @default.
- W2152507413 date "2012-06-11" @default.
- W2152507413 modified "2023-09-26" @default.
- W2152507413 title "Structured Matrix Nearness Problems:Theory and Algorithms" @default.
- W2152507413 cites W138870135 @default.
- W2152507413 cites W1480547232 @default.
- W2152507413 cites W1483804921 @default.
- W2152507413 cites W1488435683 @default.
- W2152507413 cites W1488876970 @default.
- W2152507413 cites W1497941563 @default.
- W2152507413 cites W1534416612 @default.
- W2152507413 cites W1536329667 @default.
- W2152507413 cites W1553702074 @default.
- W2152507413 cites W1557324374 @default.
- W2152507413 cites W1575658391 @default.
- W2152507413 cites W1576347883 @default.
- W2152507413 cites W1583993172 @default.
- W2152507413 cites W1628745019 @default.
- W2152507413 cites W17169604 @default.
- W2152507413 cites W1730255663 @default.
- W2152507413 cites W1742486401 @default.
- W2152507413 cites W1786620475 @default.
- W2152507413 cites W1804110266 @default.
- W2152507413 cites W1815731809 @default.
- W2152507413 cites W191724716 @default.
- W2152507413 cites W1966562865 @default.
- W2152507413 cites W1970102618 @default.
- W2152507413 cites W1973734200 @default.
- W2152507413 cites W1974824893 @default.
- W2152507413 cites W1978100686 @default.
- W2152507413 cites W1979958697 @default.
- W2152507413 cites W1983001289 @default.
- W2152507413 cites W1984152670 @default.
- W2152507413 cites W1986956221 @default.
- W2152507413 cites W1988874269 @default.
- W2152507413 cites W1990044052 @default.
- W2152507413 cites W1997320786 @default.
- W2152507413 cites W1998005284 @default.
- W2152507413 cites W2005400753 @default.
- W2152507413 cites W2008229822 @default.
- W2152507413 cites W2014092582 @default.
- W2152507413 cites W2015881065 @default.
- W2152507413 cites W2016070917 @default.
- W2152507413 cites W2016309046 @default.
- W2152507413 cites W2017618268 @default.
- W2152507413 cites W2018089423 @default.
- W2152507413 cites W2018850201 @default.
- W2152507413 cites W2019166112 @default.
- W2152507413 cites W2020804487 @default.
- W2152507413 cites W2020946994 @default.
- W2152507413 cites W2023605401 @default.
- W2152507413 cites W2024090984 @default.
- W2152507413 cites W2024309563 @default.
- W2152507413 cites W2030255580 @default.
- W2152507413 cites W2037605414 @default.
- W2152507413 cites W2043651630 @default.
- W2152507413 cites W2045512849 @default.
- W2152507413 cites W2047734770 @default.
- W2152507413 cites W2049757530 @default.
- W2152507413 cites W2051434435 @default.
- W2152507413 cites W2051669046 @default.
- W2152507413 cites W2052271668 @default.
- W2152507413 cites W2054875385 @default.
- W2152507413 cites W2055170799 @default.
- W2152507413 cites W2064558818 @default.
- W2152507413 cites W2066208129 @default.
- W2152507413 cites W2067703412 @default.
- W2152507413 cites W2070815098 @default.
- W2152507413 cites W2071419850 @default.
- W2152507413 cites W2071467620 @default.
- W2152507413 cites W2076214866 @default.
- W2152507413 cites W2076481713 @default.
- W2152507413 cites W2077316949 @default.
- W2152507413 cites W2079559649 @default.
- W2152507413 cites W2090046997 @default.
- W2152507413 cites W2091560152 @default.
- W2152507413 cites W2095147650 @default.
- W2152507413 cites W2102566880 @default.
- W2152507413 cites W2104481149 @default.
- W2152507413 cites W2105292630 @default.
- W2152507413 cites W2110662303 @default.
- W2152507413 cites W2113025256 @default.
- W2152507413 cites W2118078048 @default.
- W2152507413 cites W2118320330 @default.
- W2152507413 cites W2118682956 @default.
- W2152507413 cites W2125301015 @default.
- W2152507413 cites W2128978199 @default.
- W2152507413 cites W2130331374 @default.
- W2152507413 cites W2130697848 @default.
- W2152507413 cites W2132582398 @default.
- W2152507413 cites W2135622428 @default.
- W2152507413 cites W2137945018 @default.
- W2152507413 cites W2147152072 @default.
- W2152507413 cites W2147631863 @default.
- W2152507413 cites W2149784569 @default.
- W2152507413 cites W2153471935 @default.
- W2152507413 cites W2155465897 @default.
- W2152507413 cites W2162737890 @default.