Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152533441> ?p ?o ?g. }
- W2152533441 endingPage "423" @default.
- W2152533441 startingPage "395" @default.
- W2152533441 abstract "The ability to integrate crystalline metal oxide dielectric layers into silicon structures can open the way for a variety of novel applications which enhances the functionality and flexibility, ranging from high-k gate dielectric replacements in future Metal Oxide Semiconductor (MOS) devices to oxide/silicon/oxide heterostructures for nanoelectronic application in quantum-effect devices. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si (100) oriented surfaces, crystalline Gd2O3 grows as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Experimental results for Gd2O3-based MOS capacitors grown under optimized conditions show that these layers are excellent candidates for application as very thin high-k materials replacing SiO2 in future MOS devices. Epitaxial growth of lanthanide oxides on silicon without any interfacial layer has the advantage of enabling defined interfaces engineering. We will show that the electrical properties of epitaxial Gd2O3 thin films on Si substrates can further be improved significantly by an atomic control of interfacial structures. The incorporation of few monolayers of Ge chemisorbed on the Si surface has been found to have significant impact on the electrical properties of crystalline Gd2O3 grown epitaxially on Si substrates. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this difference disappears, indicating that for ultrathin layers, direct tunneling becomes dominant. Further, we investigate the effect of post-growth annealing on layer properties. We show that a standard forming gas anneal can eliminate flat-band voltage instabilities and hysteresis as well as reduce leakage currents by saturating the dangling bonds caused by the bonding mismatch. In addition, we investigated the impact of rapid thermal anneals on structural and electrical properties of crystalline Gd2O3 layers grown on Si. Finally, we will present a new approach for nanostructure formation which is based on solid-phase epitaxy of the Si quantum-well combined with simultaneous vapor-phase epitaxy of the insulator on top of the quantum-well. Ultra-thin single-crystalline Si buried in a single-crystalline insulator matrix with sharp interfaces was obtained by this approach on Si(111). In addition, structures consisting of a single-crystalline oxide layer with embedded Si nano-clusters for memory applications will also be demonstrated." @default.
- W2152533441 created "2016-06-24" @default.
- W2152533441 creator A5061323028 @default.
- W2152533441 date "2013-01-01" @default.
- W2152533441 modified "2023-10-14" @default.
- W2152533441 title "Crystalline Oxides on Silicon" @default.
- W2152533441 cites W1494087470 @default.
- W2152533441 cites W1541111966 @default.
- W2152533441 cites W1619095121 @default.
- W2152533441 cites W1622926454 @default.
- W2152533441 cites W1630458946 @default.
- W2152533441 cites W1904422208 @default.
- W2152533441 cites W1969844405 @default.
- W2152533441 cites W1976815119 @default.
- W2152533441 cites W1986669280 @default.
- W2152533441 cites W1993422900 @default.
- W2152533441 cites W1994706461 @default.
- W2152533441 cites W1994891117 @default.
- W2152533441 cites W2000135954 @default.
- W2152533441 cites W2002309717 @default.
- W2152533441 cites W2008191678 @default.
- W2152533441 cites W2011404653 @default.
- W2152533441 cites W2012504858 @default.
- W2152533441 cites W2021122851 @default.
- W2152533441 cites W2025448573 @default.
- W2152533441 cites W2028744130 @default.
- W2152533441 cites W2035276555 @default.
- W2152533441 cites W2039624827 @default.
- W2152533441 cites W2040877510 @default.
- W2152533441 cites W2043322779 @default.
- W2152533441 cites W2046512599 @default.
- W2152533441 cites W2049120352 @default.
- W2152533441 cites W2053674573 @default.
- W2152533441 cites W2054664401 @default.
- W2152533441 cites W2054730926 @default.
- W2152533441 cites W2054745396 @default.
- W2152533441 cites W2054777542 @default.
- W2152533441 cites W2058347034 @default.
- W2152533441 cites W2060087899 @default.
- W2152533441 cites W2071892759 @default.
- W2152533441 cites W2072900151 @default.
- W2152533441 cites W2085438527 @default.
- W2152533441 cites W2086361661 @default.
- W2152533441 cites W2095390967 @default.
- W2152533441 cites W2101781928 @default.
- W2152533441 cites W2127305522 @default.
- W2152533441 cites W2142705747 @default.
- W2152533441 cites W2165907877 @default.
- W2152533441 cites W2328171304 @default.
- W2152533441 cites W2949890058 @default.
- W2152533441 cites W3105869334 @default.
- W2152533441 cites W4234586611 @default.
- W2152533441 cites W4236939440 @default.
- W2152533441 cites W4246533562 @default.
- W2152533441 cites W4250691572 @default.
- W2152533441 cites W656412833 @default.
- W2152533441 doi "https://doi.org/10.1007/978-3-642-36535-5_11" @default.
- W2152533441 hasPublicationYear "2013" @default.
- W2152533441 type Work @default.
- W2152533441 sameAs 2152533441 @default.
- W2152533441 citedByCount "1" @default.
- W2152533441 countsByYear W21525334412018 @default.
- W2152533441 crossrefType "book-chapter" @default.
- W2152533441 hasAuthorship W2152533441A5061323028 @default.
- W2152533441 hasConcept C110738630 @default.
- W2152533441 hasConcept C111368507 @default.
- W2152533441 hasConcept C127313418 @default.
- W2152533441 hasConcept C133386390 @default.
- W2152533441 hasConcept C171250308 @default.
- W2152533441 hasConcept C191897082 @default.
- W2152533441 hasConcept C192562407 @default.
- W2152533441 hasConcept C2777289219 @default.
- W2152533441 hasConcept C2779227376 @default.
- W2152533441 hasConcept C2779851234 @default.
- W2152533441 hasConcept C3792809 @default.
- W2152533441 hasConcept C49040817 @default.
- W2152533441 hasConcept C544956773 @default.
- W2152533441 hasConcept C79794668 @default.
- W2152533441 hasConceptScore W2152533441C110738630 @default.
- W2152533441 hasConceptScore W2152533441C111368507 @default.
- W2152533441 hasConceptScore W2152533441C127313418 @default.
- W2152533441 hasConceptScore W2152533441C133386390 @default.
- W2152533441 hasConceptScore W2152533441C171250308 @default.
- W2152533441 hasConceptScore W2152533441C191897082 @default.
- W2152533441 hasConceptScore W2152533441C192562407 @default.
- W2152533441 hasConceptScore W2152533441C2777289219 @default.
- W2152533441 hasConceptScore W2152533441C2779227376 @default.
- W2152533441 hasConceptScore W2152533441C2779851234 @default.
- W2152533441 hasConceptScore W2152533441C3792809 @default.
- W2152533441 hasConceptScore W2152533441C49040817 @default.
- W2152533441 hasConceptScore W2152533441C544956773 @default.
- W2152533441 hasConceptScore W2152533441C79794668 @default.
- W2152533441 hasLocation W21525334411 @default.
- W2152533441 hasOpenAccess W2152533441 @default.
- W2152533441 hasPrimaryLocation W21525334411 @default.
- W2152533441 hasRelatedWork W161282631 @default.
- W2152533441 hasRelatedWork W1971028342 @default.
- W2152533441 hasRelatedWork W1982635368 @default.