Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152565110> ?p ?o ?g. }
- W2152565110 endingPage "656" @default.
- W2152565110 startingPage "651" @default.
- W2152565110 abstract "There are two open problems when finite mixture densities are used to model multivariate data: the selection of the number of components and the initialization. In this paper, we propose an online (recursive) algorithm that estimates the parameters of the mixture and that simultaneously selects the number of components. The new algorithm starts with a large number of randomly initialized components. A prior is used as a bias for maximally structured models. A stochastic approximation recursive learning algorithm is proposed to search for the maximum a posteriori (MAP) solution and to discard the irrelevant components." @default.
- W2152565110 created "2016-06-24" @default.
- W2152565110 creator A5065298754 @default.
- W2152565110 creator A5067264401 @default.
- W2152565110 date "2004-05-01" @default.
- W2152565110 modified "2023-09-27" @default.
- W2152565110 title "Recursive unsupervised learning of finite mixture models" @default.
- W2152565110 cites W170307911 @default.
- W2152565110 cites W2007463795 @default.
- W2152565110 cites W2010552022 @default.
- W2152565110 cites W2015245929 @default.
- W2152565110 cites W2038885294 @default.
- W2152565110 cites W2049633694 @default.
- W2152565110 cites W2114759290 @default.
- W2152565110 cites W2140136927 @default.
- W2152565110 cites W2142635246 @default.
- W2152565110 cites W2152553986 @default.
- W2152565110 cites W2154070811 @default.
- W2152565110 cites W2162746441 @default.
- W2152565110 cites W2168175751 @default.
- W2152565110 cites W2488678869 @default.
- W2152565110 cites W2567948266 @default.
- W2152565110 cites W4240190281 @default.
- W2152565110 cites W4247690662 @default.
- W2152565110 doi "https://doi.org/10.1109/tpami.2004.1273970" @default.
- W2152565110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15460286" @default.
- W2152565110 hasPublicationYear "2004" @default.
- W2152565110 type Work @default.
- W2152565110 sameAs 2152565110 @default.
- W2152565110 citedByCount "221" @default.
- W2152565110 countsByYear W21525651102012 @default.
- W2152565110 countsByYear W21525651102013 @default.
- W2152565110 countsByYear W21525651102014 @default.
- W2152565110 countsByYear W21525651102015 @default.
- W2152565110 countsByYear W21525651102016 @default.
- W2152565110 countsByYear W21525651102017 @default.
- W2152565110 countsByYear W21525651102018 @default.
- W2152565110 countsByYear W21525651102019 @default.
- W2152565110 countsByYear W21525651102020 @default.
- W2152565110 countsByYear W21525651102021 @default.
- W2152565110 countsByYear W21525651102022 @default.
- W2152565110 countsByYear W21525651102023 @default.
- W2152565110 crossrefType "journal-article" @default.
- W2152565110 hasAuthorship W2152565110A5065298754 @default.
- W2152565110 hasAuthorship W2152565110A5067264401 @default.
- W2152565110 hasBestOaLocation W21525651102 @default.
- W2152565110 hasConcept C105795698 @default.
- W2152565110 hasConcept C111472728 @default.
- W2152565110 hasConcept C11413529 @default.
- W2152565110 hasConcept C114466953 @default.
- W2152565110 hasConcept C119857082 @default.
- W2152565110 hasConcept C121332964 @default.
- W2152565110 hasConcept C138885662 @default.
- W2152565110 hasConcept C153180895 @default.
- W2152565110 hasConcept C154945302 @default.
- W2152565110 hasConcept C161584116 @default.
- W2152565110 hasConcept C168167062 @default.
- W2152565110 hasConcept C182081679 @default.
- W2152565110 hasConcept C199360897 @default.
- W2152565110 hasConcept C26517878 @default.
- W2152565110 hasConcept C33923547 @default.
- W2152565110 hasConcept C38652104 @default.
- W2152565110 hasConcept C41008148 @default.
- W2152565110 hasConcept C49781872 @default.
- W2152565110 hasConcept C55479107 @default.
- W2152565110 hasConcept C61224824 @default.
- W2152565110 hasConcept C75553542 @default.
- W2152565110 hasConcept C8038995 @default.
- W2152565110 hasConcept C81917197 @default.
- W2152565110 hasConcept C97355855 @default.
- W2152565110 hasConcept C9810830 @default.
- W2152565110 hasConceptScore W2152565110C105795698 @default.
- W2152565110 hasConceptScore W2152565110C111472728 @default.
- W2152565110 hasConceptScore W2152565110C11413529 @default.
- W2152565110 hasConceptScore W2152565110C114466953 @default.
- W2152565110 hasConceptScore W2152565110C119857082 @default.
- W2152565110 hasConceptScore W2152565110C121332964 @default.
- W2152565110 hasConceptScore W2152565110C138885662 @default.
- W2152565110 hasConceptScore W2152565110C153180895 @default.
- W2152565110 hasConceptScore W2152565110C154945302 @default.
- W2152565110 hasConceptScore W2152565110C161584116 @default.
- W2152565110 hasConceptScore W2152565110C168167062 @default.
- W2152565110 hasConceptScore W2152565110C182081679 @default.
- W2152565110 hasConceptScore W2152565110C199360897 @default.
- W2152565110 hasConceptScore W2152565110C26517878 @default.
- W2152565110 hasConceptScore W2152565110C33923547 @default.
- W2152565110 hasConceptScore W2152565110C38652104 @default.
- W2152565110 hasConceptScore W2152565110C41008148 @default.
- W2152565110 hasConceptScore W2152565110C49781872 @default.
- W2152565110 hasConceptScore W2152565110C55479107 @default.
- W2152565110 hasConceptScore W2152565110C61224824 @default.
- W2152565110 hasConceptScore W2152565110C75553542 @default.
- W2152565110 hasConceptScore W2152565110C8038995 @default.
- W2152565110 hasConceptScore W2152565110C81917197 @default.
- W2152565110 hasConceptScore W2152565110C97355855 @default.
- W2152565110 hasConceptScore W2152565110C9810830 @default.
- W2152565110 hasIssue "5" @default.
- W2152565110 hasLocation W21525651101 @default.