Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152634225> ?p ?o ?g. }
- W2152634225 endingPage "571" @default.
- W2152634225 startingPage "561" @default.
- W2152634225 abstract "Empirical models are important tools for relating field-measured biophysical variables to remote sensing data. Regression analysis has been a popular empirical method of linking these two types of data to provide continuous estimates for variables such as biomass, percent woody canopy cover, and leaf area index (LAI). Traditional methods of regression are not sufficient when resulting biophysical surfaces derived from remote sensing are subsequently used to drive ecosystem process models. Most regression analyses in remote sensing rely on a single spectral vegetation index (SVI) based on red and near-infrared reflectance from a single date of imagery. There are compelling reasons for utilizing greater spectral dimensionality, and for including SVIs from multiple dates in a regression analysis. Moreover, when including multiple SVIs and/or dates, it is useful to integrate these into a single index for regression modeling. Selection of an appropriate regression model, use of multiple SVIs from multiple dates of imagery as predictor variables, and employment of canonical correlation analysis (CCA) to integrate these multiple indices into a single index represent a significant strategic improvement over existing uses of regression analysis in remote sensing. To demonstrate this improved strategy, we compared three different types of regression models to predict LAI for an agro-ecosystem and live tree canopy cover for a needleleaf evergreen boreal forest: traditional (Y on X) ordinary least squares (OLS) regression, inverse (X on Y) OLS regression, and an orthogonal regression method called reduced major axis (RMA). Each model incorporated multiple SVIs from multiple dates and CCA was used to integrate these. For a given dataset, the three regression-modeling approaches produced identical coefficients of determination and intercepts, but different slopes, giving rise to divergent predictive characteristics. The traditional approach yielded the lowest root mean square error (RMSE), but the variance in the predictions was lower than the variance in the observed dataset. The inverse method had the highest RMSE and the variance was inflated relative to the variance of the observed dataset. RMA provided an intermediate set of predictions in terms of the RMSE, and the variance in the observations was preserved in the predictions. These results are predictable from regression theory, but that theory has been essentially ignored within the discipline of remote sensing." @default.
- W2152634225 created "2016-06-24" @default.
- W2152634225 creator A5015251594 @default.
- W2152634225 creator A5023792854 @default.
- W2152634225 creator A5057785912 @default.
- W2152634225 creator A5063686564 @default.
- W2152634225 date "2003-04-01" @default.
- W2152634225 modified "2023-10-18" @default.
- W2152634225 title "An improved strategy for regression of biophysical variables and Landsat ETM+ data" @default.
- W2152634225 cites W1963949604 @default.
- W2152634225 cites W1964217023 @default.
- W2152634225 cites W1967248741 @default.
- W2152634225 cites W1972923945 @default.
- W2152634225 cites W1973410094 @default.
- W2152634225 cites W1974734701 @default.
- W2152634225 cites W1978280029 @default.
- W2152634225 cites W1984682798 @default.
- W2152634225 cites W1987352360 @default.
- W2152634225 cites W1999068520 @default.
- W2152634225 cites W1999091234 @default.
- W2152634225 cites W2000648382 @default.
- W2152634225 cites W2005571987 @default.
- W2152634225 cites W2014071874 @default.
- W2152634225 cites W2017697133 @default.
- W2152634225 cites W2023847826 @default.
- W2152634225 cites W2031600437 @default.
- W2152634225 cites W2036479590 @default.
- W2152634225 cites W2039141594 @default.
- W2152634225 cites W2043142216 @default.
- W2152634225 cites W2055958437 @default.
- W2152634225 cites W2063623478 @default.
- W2152634225 cites W2068115394 @default.
- W2152634225 cites W2077707413 @default.
- W2152634225 cites W2082139814 @default.
- W2152634225 cites W2083053342 @default.
- W2152634225 cites W2088292560 @default.
- W2152634225 cites W2093893111 @default.
- W2152634225 cites W2095144920 @default.
- W2152634225 cites W2105906243 @default.
- W2152634225 cites W2127559745 @default.
- W2152634225 cites W2132406085 @default.
- W2152634225 cites W2145167036 @default.
- W2152634225 cites W2155722785 @default.
- W2152634225 cites W2167839896 @default.
- W2152634225 cites W2167986532 @default.
- W2152634225 cites W4241607140 @default.
- W2152634225 cites W4241672564 @default.
- W2152634225 cites W4242739018 @default.
- W2152634225 cites W4253454537 @default.
- W2152634225 doi "https://doi.org/10.1016/s0034-4257(02)00173-6" @default.
- W2152634225 hasPublicationYear "2003" @default.
- W2152634225 type Work @default.
- W2152634225 sameAs 2152634225 @default.
- W2152634225 citedByCount "390" @default.
- W2152634225 countsByYear W21526342252012 @default.
- W2152634225 countsByYear W21526342252013 @default.
- W2152634225 countsByYear W21526342252014 @default.
- W2152634225 countsByYear W21526342252015 @default.
- W2152634225 countsByYear W21526342252016 @default.
- W2152634225 countsByYear W21526342252017 @default.
- W2152634225 countsByYear W21526342252018 @default.
- W2152634225 countsByYear W21526342252019 @default.
- W2152634225 countsByYear W21526342252020 @default.
- W2152634225 countsByYear W21526342252021 @default.
- W2152634225 countsByYear W21526342252022 @default.
- W2152634225 countsByYear W21526342252023 @default.
- W2152634225 crossrefType "journal-article" @default.
- W2152634225 hasAuthorship W2152634225A5015251594 @default.
- W2152634225 hasAuthorship W2152634225A5023792854 @default.
- W2152634225 hasAuthorship W2152634225A5057785912 @default.
- W2152634225 hasAuthorship W2152634225A5063686564 @default.
- W2152634225 hasConcept C101000010 @default.
- W2152634225 hasConcept C105795698 @default.
- W2152634225 hasConcept C152877465 @default.
- W2152634225 hasConcept C1549246 @default.
- W2152634225 hasConcept C166957645 @default.
- W2152634225 hasConcept C18903297 @default.
- W2152634225 hasConcept C205649164 @default.
- W2152634225 hasConcept C25989453 @default.
- W2152634225 hasConcept C33923547 @default.
- W2152634225 hasConcept C39432304 @default.
- W2152634225 hasConcept C48921125 @default.
- W2152634225 hasConcept C62649853 @default.
- W2152634225 hasConcept C83546350 @default.
- W2152634225 hasConcept C86803240 @default.
- W2152634225 hasConcept C99656134 @default.
- W2152634225 hasConceptScore W2152634225C101000010 @default.
- W2152634225 hasConceptScore W2152634225C105795698 @default.
- W2152634225 hasConceptScore W2152634225C152877465 @default.
- W2152634225 hasConceptScore W2152634225C1549246 @default.
- W2152634225 hasConceptScore W2152634225C166957645 @default.
- W2152634225 hasConceptScore W2152634225C18903297 @default.
- W2152634225 hasConceptScore W2152634225C205649164 @default.
- W2152634225 hasConceptScore W2152634225C25989453 @default.
- W2152634225 hasConceptScore W2152634225C33923547 @default.
- W2152634225 hasConceptScore W2152634225C39432304 @default.
- W2152634225 hasConceptScore W2152634225C48921125 @default.
- W2152634225 hasConceptScore W2152634225C62649853 @default.