Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152732450> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2152732450 abstract "Meta-learning is currently a hot research topic in machine learning, which has emerged from the need to support data mining automation in issues related to algorithm and parameter selection. Finding the best learning strategy for a new domain/problem can prove to be an expensive and time-consuming process even for the experienced analysts. This paper presents a new meta-learning system, designed to automatically discover the most reliable learning schemes for a particular dataset, based on the knowledge the system acquired about similar datasets. The novelty of the approach consists in combining dataset characterization with landmarking to increase the accuracy of the predictions. The proposed architecture is aiming to resolve the problem of selecting the best classifier for a dataset while minimizing the work done by the user but still offering flexibility." @default.
- W2152732450 created "2016-06-24" @default.
- W2152732450 creator A5020291895 @default.
- W2152732450 creator A5031411851 @default.
- W2152732450 creator A5049230139 @default.
- W2152732450 date "2009-08-01" @default.
- W2152732450 modified "2023-09-24" @default.
- W2152732450 title "Evolutional meta-learning framework for automatic classifier selection" @default.
- W2152732450 cites W1539739406 @default.
- W2152732450 cites W1987885400 @default.
- W2152732450 cites W2118789407 @default.
- W2152732450 doi "https://doi.org/10.1109/iccp.2009.5284790" @default.
- W2152732450 hasPublicationYear "2009" @default.
- W2152732450 type Work @default.
- W2152732450 sameAs 2152732450 @default.
- W2152732450 citedByCount "7" @default.
- W2152732450 countsByYear W21527324502014 @default.
- W2152732450 countsByYear W21527324502019 @default.
- W2152732450 countsByYear W21527324502020 @default.
- W2152732450 countsByYear W21527324502022 @default.
- W2152732450 crossrefType "proceedings-article" @default.
- W2152732450 hasAuthorship W2152732450A5020291895 @default.
- W2152732450 hasAuthorship W2152732450A5031411851 @default.
- W2152732450 hasAuthorship W2152732450A5049230139 @default.
- W2152732450 hasConcept C119857082 @default.
- W2152732450 hasConcept C127413603 @default.
- W2152732450 hasConcept C154945302 @default.
- W2152732450 hasConcept C201995342 @default.
- W2152732450 hasConcept C2780451532 @default.
- W2152732450 hasConcept C2781002164 @default.
- W2152732450 hasConcept C41008148 @default.
- W2152732450 hasConcept C81917197 @default.
- W2152732450 hasConcept C95623464 @default.
- W2152732450 hasConceptScore W2152732450C119857082 @default.
- W2152732450 hasConceptScore W2152732450C127413603 @default.
- W2152732450 hasConceptScore W2152732450C154945302 @default.
- W2152732450 hasConceptScore W2152732450C201995342 @default.
- W2152732450 hasConceptScore W2152732450C2780451532 @default.
- W2152732450 hasConceptScore W2152732450C2781002164 @default.
- W2152732450 hasConceptScore W2152732450C41008148 @default.
- W2152732450 hasConceptScore W2152732450C81917197 @default.
- W2152732450 hasConceptScore W2152732450C95623464 @default.
- W2152732450 hasLocation W21527324501 @default.
- W2152732450 hasOpenAccess W2152732450 @default.
- W2152732450 hasPrimaryLocation W21527324501 @default.
- W2152732450 hasRelatedWork W2961085424 @default.
- W2152732450 hasRelatedWork W3020638616 @default.
- W2152732450 hasRelatedWork W3092824172 @default.
- W2152732450 hasRelatedWork W3105036711 @default.
- W2152732450 hasRelatedWork W3199608561 @default.
- W2152732450 hasRelatedWork W3200179079 @default.
- W2152732450 hasRelatedWork W3200361725 @default.
- W2152732450 hasRelatedWork W4211088005 @default.
- W2152732450 hasRelatedWork W4213165337 @default.
- W2152732450 hasRelatedWork W4249229055 @default.
- W2152732450 isParatext "false" @default.
- W2152732450 isRetracted "false" @default.
- W2152732450 magId "2152732450" @default.
- W2152732450 workType "article" @default.