Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152865972> ?p ?o ?g. }
- W2152865972 endingPage "437" @default.
- W2152865972 startingPage "407" @default.
- W2152865972 abstract "VEMAP Members 1 Abstract. We compare the simulations of three biogeography models (BIOME2, Dynamic Global Phytogeography Model (DOLY), and Mapped Atmosphere-Plant Soil System (MAPSS)) and three biogeochemistry models (BIOME-BGC (BioGeochemistry Cycles), CENTURY, and Terrestrial Ecosystem Model (TEM)) for the conterminous United States under contemporary conditions of atmospheric CO2 and climate. We also compare the simulations of these models under doubled CO2 and a range of climate scenarios. For contemporary conditions, the biogeography models successfully simulate the geographic distribution of major vegetation types and have similar estimates of area for forests (42 to 46% of the conterminous United States), grasslands (17 to 27%), savannas (15 to 25%), and shrublands (14 to 18%). The biogeochemistry models estimate similar continental-scale net primary production (NPP; 3125 to 3772 x 10 2 gC yr ') and total carbon storage (108 to 118 5 x 10 gC) for contemporary conditions. Among the scenarios of doubled CO2 and associated equilibrium climates produced by the three general circulation models (Oregon State University (OSU), Geophysical Fluid Dynamics Laboratory (GFDL), and United Kingdom Meteorological Office (UKMO)), all three biogeography models show both gains and losses of total forest area depending on the scenario (between 38 and 53% of conterminous United States area). The only consistent gains in forest area with all three models (BIOME2, DOLY, and MAPSS) were under the GFDL scenario due to large increases in precipitation. MAPSS lost forest area under UKMO, DOLY under OSU, and BIOME2 under both UKMO and OSU. The variability in forest area estimates occurs because the hydrologic cycles of the biogeography models have different sensitivities to increases in temperature and CO2. However, in general, the biogeography models produced broadly similar results when incorporating both climate change and elevated CO2 concentrations. For these scenarios, the NPP estimated by the biogeochemistry models increases between 2% (BIOME-BGC with UKMO climate) and 35% (TEM with UKMO climate). Changes in total carbon storage range from losses of 33% (BIOME-BGC with UKMO climate) to gains of 16% (TEM with OSU climate). The CENTURY responses of NPP and carbon storage are positive and intermediate to the responses of BIOME-BGC and TEM. The variability in carbon cycle responses occurs because the hydrologic and nitrogen cycles of the biogeochemistry models have different sensitivities to increases in temperature and CO2. When the biogeochemistry models are run with the vegetation distributions of the biogeography models, NPP ranges from no response (BIOME-BGC with all three biogeography model vegetations for UKMO climate) to increases of 40% (TEM with MAPSS vegetation for OSU climate). The total carbon storage response ranges from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to an increase of 32% (TEM with MAPSS vegetation for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are primarily caused by decreases in forested area and temperature-induced water stress. The OSU and GFDL responses of TEM with MAPSS vegetations are primarily" @default.
- W2152865972 created "2016-06-24" @default.
- W2152865972 date "1995-12-01" @default.
- W2152865972 modified "2023-09-30" @default.
- W2152865972 title "Vegetation/Ecosystem Modeling and Analysis Project:Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO<sub>2</sub>doubling" @default.
- W2152865972 cites W1503755828 @default.
- W2152865972 cites W1542233926 @default.
- W2152865972 cites W1811877823 @default.
- W2152865972 cites W1964712650 @default.
- W2152865972 cites W1980592973 @default.
- W2152865972 cites W1984178469 @default.
- W2152865972 cites W1987297716 @default.
- W2152865972 cites W1988514021 @default.
- W2152865972 cites W1989324207 @default.
- W2152865972 cites W1999355621 @default.
- W2152865972 cites W2005130712 @default.
- W2152865972 cites W2005867148 @default.
- W2152865972 cites W2010784770 @default.
- W2152865972 cites W2015638504 @default.
- W2152865972 cites W2018672425 @default.
- W2152865972 cites W2019147722 @default.
- W2152865972 cites W2019990061 @default.
- W2152865972 cites W2022944615 @default.
- W2152865972 cites W2024415358 @default.
- W2152865972 cites W2027703519 @default.
- W2152865972 cites W2032007905 @default.
- W2152865972 cites W2034159032 @default.
- W2152865972 cites W2036611220 @default.
- W2152865972 cites W2039088888 @default.
- W2152865972 cites W2046857879 @default.
- W2152865972 cites W2055921565 @default.
- W2152865972 cites W2057433825 @default.
- W2152865972 cites W2057822262 @default.
- W2152865972 cites W2059494192 @default.
- W2152865972 cites W2060362624 @default.
- W2152865972 cites W2063613693 @default.
- W2152865972 cites W2064534124 @default.
- W2152865972 cites W2071066314 @default.
- W2152865972 cites W2074383586 @default.
- W2152865972 cites W2090900319 @default.
- W2152865972 cites W2091206738 @default.
- W2152865972 cites W2094405218 @default.
- W2152865972 cites W2095442847 @default.
- W2152865972 cites W2116864840 @default.
- W2152865972 cites W2117329279 @default.
- W2152865972 cites W2118710522 @default.
- W2152865972 cites W2122732086 @default.
- W2152865972 cites W21230015 @default.
- W2152865972 cites W2123086055 @default.
- W2152865972 cites W2125423077 @default.
- W2152865972 cites W2133769848 @default.
- W2152865972 cites W2135735088 @default.
- W2152865972 cites W2135740120 @default.
- W2152865972 cites W2142935748 @default.
- W2152865972 cites W2152313874 @default.
- W2152865972 cites W2158683657 @default.
- W2152865972 cites W2162066644 @default.
- W2152865972 cites W2163850148 @default.
- W2152865972 cites W2176478590 @default.
- W2152865972 cites W2182526330 @default.
- W2152865972 cites W2314614550 @default.
- W2152865972 cites W2315816144 @default.
- W2152865972 cites W2319278597 @default.
- W2152865972 cites W2319734873 @default.
- W2152865972 cites W2320600482 @default.
- W2152865972 cites W2330105665 @default.
- W2152865972 cites W271183731 @default.
- W2152865972 doi "https://doi.org/10.1029/95gb02746" @default.
- W2152865972 hasPublicationYear "1995" @default.
- W2152865972 type Work @default.
- W2152865972 sameAs 2152865972 @default.
- W2152865972 citedByCount "563" @default.
- W2152865972 countsByYear W21528659722012 @default.
- W2152865972 countsByYear W21528659722013 @default.
- W2152865972 countsByYear W21528659722014 @default.
- W2152865972 countsByYear W21528659722015 @default.
- W2152865972 countsByYear W21528659722016 @default.
- W2152865972 countsByYear W21528659722017 @default.
- W2152865972 countsByYear W21528659722018 @default.
- W2152865972 countsByYear W21528659722019 @default.
- W2152865972 countsByYear W21528659722020 @default.
- W2152865972 countsByYear W21528659722021 @default.
- W2152865972 countsByYear W21528659722022 @default.
- W2152865972 countsByYear W21528659722023 @default.
- W2152865972 crossrefType "journal-article" @default.
- W2152865972 hasBestOaLocation W21528659722 @default.
- W2152865972 hasConcept C100970517 @default.
- W2152865972 hasConcept C110872660 @default.
- W2152865972 hasConcept C111368507 @default.
- W2152865972 hasConcept C123575903 @default.
- W2152865972 hasConcept C127313418 @default.
- W2152865972 hasConcept C130309983 @default.
- W2152865972 hasConcept C132651083 @default.
- W2152865972 hasConcept C142724271 @default.
- W2152865972 hasConcept C18903297 @default.
- W2152865972 hasConcept C1965285 @default.
- W2152865972 hasConcept C199491958 @default.
- W2152865972 hasConcept C205649164 @default.