Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152933101> ?p ?o ?g. }
- W2152933101 endingPage "427" @default.
- W2152933101 startingPage "381" @default.
- W2152933101 abstract "In contrast to a posterior analysis given a particular sampling model, posterior model probabilities in the context of model uncertainty are typically rather sensitive to the specification of the prior. In particular, ‘diffuse’ priors on model-specific parameters can lead to quite unexpected consequences. Here we focus on the practically relevant situation where we need to entertain a (large) number of sampling models and we have (or wish to use) little or no subjective prior information. We aim at providing an ‘automatic’ or ‘benchmark’ prior structure that can be used in such cases. We focus on the normal linear regression model with uncertainty in the choice of regressors. We propose a partly non-informative prior structure related to a natural conjugate g-prior specification, where the amount of subjective information requested from the user is limited to the choice of a single scalar hyperparameter g0j. The consequences of different choices for g0j are examined. We investigate theoretical properties, such as consistency of the implied Bayesian procedure. Links with classical information criteria are provided. More importantly, we examine the finite sample implications of several choices of g0j in a simulation study. The use of the MC3 algorithm of Madigan and York (Int. Stat. Rev. 63 (1995) 215), combined with efficient coding in Fortran, makes it feasible to conduct large simulations. In addition to posterior criteria, we shall also compare the predictive performance of different priors. A classic example concerning the economics of crime will also be provided and contrasted with results in the literature. The main findings of the paper will lead us to propose a ‘benchmark’ prior specification in a linear regression context with model uncertainty." @default.
- W2152933101 created "2016-06-24" @default.
- W2152933101 creator A5003710494 @default.
- W2152933101 creator A5041071587 @default.
- W2152933101 creator A5085141989 @default.
- W2152933101 date "2001-02-01" @default.
- W2152933101 modified "2023-10-10" @default.
- W2152933101 title "Benchmark priors for Bayesian model averaging" @default.
- W2152933101 cites W1526262927 @default.
- W2152933101 cites W1978160697 @default.
- W2152933101 cites W1978816856 @default.
- W2152933101 cites W1981049247 @default.
- W2152933101 cites W1986783130 @default.
- W2152933101 cites W1999555905 @default.
- W2152933101 cites W2001414552 @default.
- W2152933101 cites W2026553016 @default.
- W2152933101 cites W2037055640 @default.
- W2152933101 cites W2057053231 @default.
- W2152933101 cites W2060442802 @default.
- W2152933101 cites W2074282020 @default.
- W2152933101 cites W2090158848 @default.
- W2152933101 cites W2106706098 @default.
- W2152933101 cites W2109055008 @default.
- W2152933101 cites W2118404719 @default.
- W2152933101 cites W2158777221 @default.
- W2152933101 cites W2160868401 @default.
- W2152933101 cites W2166624680 @default.
- W2152933101 cites W2168175751 @default.
- W2152933101 cites W2189821821 @default.
- W2152933101 cites W2330192890 @default.
- W2152933101 cites W2796293253 @default.
- W2152933101 cites W3122448917 @default.
- W2152933101 cites W3145461785 @default.
- W2152933101 cites W3150371524 @default.
- W2152933101 cites W4229849994 @default.
- W2152933101 cites W4231168459 @default.
- W2152933101 cites W4235691539 @default.
- W2152933101 cites W4239353198 @default.
- W2152933101 cites W4243306052 @default.
- W2152933101 cites W4245186283 @default.
- W2152933101 cites W4246858143 @default.
- W2152933101 cites W4249506491 @default.
- W2152933101 cites W4253305902 @default.
- W2152933101 cites W4255582690 @default.
- W2152933101 cites W4255975151 @default.
- W2152933101 doi "https://doi.org/10.1016/s0304-4076(00)00076-2" @default.
- W2152933101 hasPublicationYear "2001" @default.
- W2152933101 type Work @default.
- W2152933101 sameAs 2152933101 @default.
- W2152933101 citedByCount "850" @default.
- W2152933101 countsByYear W21529331012012 @default.
- W2152933101 countsByYear W21529331012013 @default.
- W2152933101 countsByYear W21529331012014 @default.
- W2152933101 countsByYear W21529331012015 @default.
- W2152933101 countsByYear W21529331012016 @default.
- W2152933101 countsByYear W21529331012017 @default.
- W2152933101 countsByYear W21529331012018 @default.
- W2152933101 countsByYear W21529331012019 @default.
- W2152933101 countsByYear W21529331012020 @default.
- W2152933101 countsByYear W21529331012021 @default.
- W2152933101 countsByYear W21529331012022 @default.
- W2152933101 countsByYear W21529331012023 @default.
- W2152933101 crossrefType "journal-article" @default.
- W2152933101 hasAuthorship W2152933101A5003710494 @default.
- W2152933101 hasAuthorship W2152933101A5041071587 @default.
- W2152933101 hasAuthorship W2152933101A5085141989 @default.
- W2152933101 hasBestOaLocation W21529331012 @default.
- W2152933101 hasConcept C107673813 @default.
- W2152933101 hasConcept C119857082 @default.
- W2152933101 hasConcept C142291917 @default.
- W2152933101 hasConcept C149782125 @default.
- W2152933101 hasConcept C151730666 @default.
- W2152933101 hasConcept C154945302 @default.
- W2152933101 hasConcept C160234255 @default.
- W2152933101 hasConcept C177769412 @default.
- W2152933101 hasConcept C2776436953 @default.
- W2152933101 hasConcept C2776502983 @default.
- W2152933101 hasConcept C2779343474 @default.
- W2152933101 hasConcept C33923547 @default.
- W2152933101 hasConcept C41008148 @default.
- W2152933101 hasConcept C8642999 @default.
- W2152933101 hasConcept C86803240 @default.
- W2152933101 hasConceptScore W2152933101C107673813 @default.
- W2152933101 hasConceptScore W2152933101C119857082 @default.
- W2152933101 hasConceptScore W2152933101C142291917 @default.
- W2152933101 hasConceptScore W2152933101C149782125 @default.
- W2152933101 hasConceptScore W2152933101C151730666 @default.
- W2152933101 hasConceptScore W2152933101C154945302 @default.
- W2152933101 hasConceptScore W2152933101C160234255 @default.
- W2152933101 hasConceptScore W2152933101C177769412 @default.
- W2152933101 hasConceptScore W2152933101C2776436953 @default.
- W2152933101 hasConceptScore W2152933101C2776502983 @default.
- W2152933101 hasConceptScore W2152933101C2779343474 @default.
- W2152933101 hasConceptScore W2152933101C33923547 @default.
- W2152933101 hasConceptScore W2152933101C41008148 @default.
- W2152933101 hasConceptScore W2152933101C8642999 @default.
- W2152933101 hasConceptScore W2152933101C86803240 @default.
- W2152933101 hasIssue "2" @default.