Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152964728> ?p ?o ?g. }
- W2152964728 abstract "Hospital in-patient falls constitute a prominent problem in terms of costs and consequences. Geriatric institutions are most often affected, and common screening tools cannot predict in-patient falls consistently. Our objectives are to derive comprehensible fall risk classification models from a large data set of geriatric in-patients' assessment data and to evaluate their predictive performance (aim#1), and to identify high-risk subgroups from the data (aim#2).A data set of n = 5,176 single in-patient episodes covering 1.5 years of admissions to a geriatric hospital were extracted from the hospital's data base and matched with fall incident reports (n = 493). A classification tree model was induced using the C4.5 algorithm as well as a logistic regression model, and their predictive performance was evaluated. Furthermore, high-risk subgroups were identified from extracted classification rules with a support of more than 100 instances.The classification tree model showed an overall classification accuracy of 66%, with a sensitivity of 55.4%, a specificity of 67.1%, positive and negative predictive values of 15% resp. 93.5%. Five high-risk groups were identified, defined by high age, low Barthel index, cognitive impairment, multi-medication and co-morbidity.Our results show that a little more than half of the fallers may be identified correctly by our model, but the positive predictive value is too low to be applicable. Non-fallers, on the other hand, may be sorted out with the model quite well. The high-risk subgroups and the risk factors identified (age, low ADL score, cognitive impairment, institutionalization, polypharmacy and co-morbidity) reflect domain knowledge and may be used to screen certain subgroups of patients with a high risk of falling. Classification models derived from a large data set using data mining methods can compete with current dedicated fall risk screening tools, yet lack diagnostic precision. High-risk subgroups may be identified automatically from existing geriatric assessment data, especially when combined with domain knowledge in a hybrid classification model. Further work is necessary to validate our approach in a controlled prospective setting." @default.
- W2152964728 created "2016-06-24" @default.
- W2152964728 creator A5000112146 @default.
- W2152964728 creator A5007669264 @default.
- W2152964728 creator A5018534999 @default.
- W2152964728 creator A5021934186 @default.
- W2152964728 creator A5024392920 @default.
- W2152964728 creator A5030870582 @default.
- W2152964728 creator A5067794632 @default.
- W2152964728 date "2012-03-14" @default.
- W2152964728 modified "2023-10-03" @default.
- W2152964728 title "Mining geriatric assessment data for in-patient fall prediction models and high-risk subgroups" @default.
- W2152964728 cites W129863322 @default.
- W2152964728 cites W1968742327 @default.
- W2152964728 cites W1974704788 @default.
- W2152964728 cites W1983344302 @default.
- W2152964728 cites W2002289152 @default.
- W2152964728 cites W2034656062 @default.
- W2152964728 cites W2034878282 @default.
- W2152964728 cites W2053577834 @default.
- W2152964728 cites W2057310665 @default.
- W2152964728 cites W2065173279 @default.
- W2152964728 cites W2099854537 @default.
- W2152964728 cites W2106782939 @default.
- W2152964728 cites W2113314764 @default.
- W2152964728 cites W2127221603 @default.
- W2152964728 cites W2127227855 @default.
- W2152964728 cites W2128814754 @default.
- W2152964728 cites W2151287133 @default.
- W2152964728 cites W2151366317 @default.
- W2152964728 cites W2154288211 @default.
- W2152964728 cites W2158190397 @default.
- W2152964728 cites W2170550800 @default.
- W2152964728 cites W4291756080 @default.
- W2152964728 doi "https://doi.org/10.1186/1472-6947-12-19" @default.
- W2152964728 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3314576" @default.
- W2152964728 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22417403" @default.
- W2152964728 hasPublicationYear "2012" @default.
- W2152964728 type Work @default.
- W2152964728 sameAs 2152964728 @default.
- W2152964728 citedByCount "30" @default.
- W2152964728 countsByYear W21529647282013 @default.
- W2152964728 countsByYear W21529647282014 @default.
- W2152964728 countsByYear W21529647282015 @default.
- W2152964728 countsByYear W21529647282016 @default.
- W2152964728 countsByYear W21529647282017 @default.
- W2152964728 countsByYear W21529647282018 @default.
- W2152964728 countsByYear W21529647282019 @default.
- W2152964728 countsByYear W21529647282020 @default.
- W2152964728 countsByYear W21529647282021 @default.
- W2152964728 countsByYear W21529647282022 @default.
- W2152964728 countsByYear W21529647282023 @default.
- W2152964728 crossrefType "journal-article" @default.
- W2152964728 hasAuthorship W2152964728A5000112146 @default.
- W2152964728 hasAuthorship W2152964728A5007669264 @default.
- W2152964728 hasAuthorship W2152964728A5018534999 @default.
- W2152964728 hasAuthorship W2152964728A5021934186 @default.
- W2152964728 hasAuthorship W2152964728A5024392920 @default.
- W2152964728 hasAuthorship W2152964728A5030870582 @default.
- W2152964728 hasAuthorship W2152964728A5067794632 @default.
- W2152964728 hasBestOaLocation W21529647281 @default.
- W2152964728 hasConcept C111472728 @default.
- W2152964728 hasConcept C118552586 @default.
- W2152964728 hasConcept C12174686 @default.
- W2152964728 hasConcept C124101348 @default.
- W2152964728 hasConcept C126322002 @default.
- W2152964728 hasConcept C138885662 @default.
- W2152964728 hasConcept C151956035 @default.
- W2152964728 hasConcept C177264268 @default.
- W2152964728 hasConcept C199360897 @default.
- W2152964728 hasConcept C2778136018 @default.
- W2152964728 hasConcept C3019719930 @default.
- W2152964728 hasConcept C38652104 @default.
- W2152964728 hasConcept C41008148 @default.
- W2152964728 hasConcept C54183767 @default.
- W2152964728 hasConcept C5481197 @default.
- W2152964728 hasConcept C71924100 @default.
- W2152964728 hasConcept C84525736 @default.
- W2152964728 hasConceptScore W2152964728C111472728 @default.
- W2152964728 hasConceptScore W2152964728C118552586 @default.
- W2152964728 hasConceptScore W2152964728C12174686 @default.
- W2152964728 hasConceptScore W2152964728C124101348 @default.
- W2152964728 hasConceptScore W2152964728C126322002 @default.
- W2152964728 hasConceptScore W2152964728C138885662 @default.
- W2152964728 hasConceptScore W2152964728C151956035 @default.
- W2152964728 hasConceptScore W2152964728C177264268 @default.
- W2152964728 hasConceptScore W2152964728C199360897 @default.
- W2152964728 hasConceptScore W2152964728C2778136018 @default.
- W2152964728 hasConceptScore W2152964728C3019719930 @default.
- W2152964728 hasConceptScore W2152964728C38652104 @default.
- W2152964728 hasConceptScore W2152964728C41008148 @default.
- W2152964728 hasConceptScore W2152964728C54183767 @default.
- W2152964728 hasConceptScore W2152964728C5481197 @default.
- W2152964728 hasConceptScore W2152964728C71924100 @default.
- W2152964728 hasConceptScore W2152964728C84525736 @default.
- W2152964728 hasIssue "1" @default.
- W2152964728 hasLocation W21529647281 @default.
- W2152964728 hasLocation W21529647282 @default.
- W2152964728 hasLocation W21529647283 @default.
- W2152964728 hasLocation W21529647284 @default.