Matches in SemOpenAlex for { <https://semopenalex.org/work/W2152998434> ?p ?o ?g. }
- W2152998434 endingPage "103" @default.
- W2152998434 startingPage "90" @default.
- W2152998434 abstract "This study focuses on predicting Australia‘s low cost carrier passenger demand and revenue passenger kilometres performed (RPKs) using traditional econometric and artificial neural network (ANN) modelling methods. For model development, Australia‘s real GDP, real GDP per capita, air fares, Australia‘s population and unemployment, tourism (bed spaces) and 4 dummy variables, utilizing quarterly data obtained between 2002 and 2012, were selected as model parameters. The neural network used multi-layer perceptron (MLP) architecture that compromised a multi-layer feed-forward network and the sigmoid and linear functions were used as activation functions with the feed forward‐back propagation algorithm. The ANN was applied during training, testing and validation and had 11 inputs, 9 neurons in the hidden layers and 1 neuron in the output layer. When comparing the predictive accuracy of the two techniques, the ANNs provided the best prediction and showed that the performance of the ANN model was better than that of the traditional multiple linear regression (MLR) approach. The highest R-value for the enplaned passengers ANN was around 0.996 and for the RPKs ANN was round 0.998, respectively." @default.
- W2152998434 created "2016-06-24" @default.
- W2152998434 creator A5029385960 @default.
- W2152998434 creator A5052808112 @default.
- W2152998434 creator A5059671237 @default.
- W2152998434 date "2015-06-24" @default.
- W2152998434 modified "2023-09-29" @default.
- W2152998434 title "FORECASTING DEMAND FOR LOW COST CARRIERS IN AUSTRALIA USING AN ARTIFICIAL NEURAL NETWORK APPROACH" @default.
- W2152998434 cites W1495464107 @default.
- W2152998434 cites W1510939226 @default.
- W2152998434 cites W1586335931 @default.
- W2152998434 cites W1964710286 @default.
- W2152998434 cites W1975836306 @default.
- W2152998434 cites W199094806 @default.
- W2152998434 cites W1991898226 @default.
- W2152998434 cites W1993849751 @default.
- W2152998434 cites W2000164913 @default.
- W2152998434 cites W2000247569 @default.
- W2152998434 cites W2013472039 @default.
- W2152998434 cites W2018218497 @default.
- W2152998434 cites W2020970536 @default.
- W2152998434 cites W2022349803 @default.
- W2152998434 cites W2025796800 @default.
- W2152998434 cites W2050501360 @default.
- W2152998434 cites W2050756998 @default.
- W2152998434 cites W2053223966 @default.
- W2152998434 cites W2053531352 @default.
- W2152998434 cites W2058325810 @default.
- W2152998434 cites W2067284569 @default.
- W2152998434 cites W2072202361 @default.
- W2152998434 cites W2073347206 @default.
- W2152998434 cites W2075648233 @default.
- W2152998434 cites W2077499808 @default.
- W2152998434 cites W2079005441 @default.
- W2152998434 cites W2079794514 @default.
- W2152998434 cites W2082665979 @default.
- W2152998434 cites W2084732496 @default.
- W2152998434 cites W2086717419 @default.
- W2152998434 cites W2089173485 @default.
- W2152998434 cites W2091687927 @default.
- W2152998434 cites W2092595282 @default.
- W2152998434 cites W2117014758 @default.
- W2152998434 cites W2137266317 @default.
- W2152998434 cites W2156687587 @default.
- W2152998434 cites W2184180912 @default.
- W2152998434 cites W2187873259 @default.
- W2152998434 cites W2488234727 @default.
- W2152998434 cites W2504915667 @default.
- W2152998434 cites W4240390453 @default.
- W2152998434 cites W4248778835 @default.
- W2152998434 cites W4300402905 @default.
- W2152998434 cites W85587801 @default.
- W2152998434 doi "https://doi.org/10.3846/16487788.2015.1054157" @default.
- W2152998434 hasPublicationYear "2015" @default.
- W2152998434 type Work @default.
- W2152998434 sameAs 2152998434 @default.
- W2152998434 citedByCount "19" @default.
- W2152998434 countsByYear W21529984342016 @default.
- W2152998434 countsByYear W21529984342017 @default.
- W2152998434 countsByYear W21529984342018 @default.
- W2152998434 countsByYear W21529984342020 @default.
- W2152998434 countsByYear W21529984342021 @default.
- W2152998434 countsByYear W21529984342022 @default.
- W2152998434 countsByYear W21529984342023 @default.
- W2152998434 crossrefType "journal-article" @default.
- W2152998434 hasAuthorship W2152998434A5029385960 @default.
- W2152998434 hasAuthorship W2152998434A5052808112 @default.
- W2152998434 hasAuthorship W2152998434A5059671237 @default.
- W2152998434 hasBestOaLocation W21529984341 @default.
- W2152998434 hasConcept C10138342 @default.
- W2152998434 hasConcept C119857082 @default.
- W2152998434 hasConcept C127413603 @default.
- W2152998434 hasConcept C127598652 @default.
- W2152998434 hasConcept C144024400 @default.
- W2152998434 hasConcept C149782125 @default.
- W2152998434 hasConcept C149923435 @default.
- W2152998434 hasConcept C154945302 @default.
- W2152998434 hasConcept C155032097 @default.
- W2152998434 hasConcept C162324750 @default.
- W2152998434 hasConcept C179717631 @default.
- W2152998434 hasConcept C180075932 @default.
- W2152998434 hasConcept C195487862 @default.
- W2152998434 hasConcept C2908647359 @default.
- W2152998434 hasConcept C41008148 @default.
- W2152998434 hasConcept C48921125 @default.
- W2152998434 hasConcept C50644808 @default.
- W2152998434 hasConcept C60908668 @default.
- W2152998434 hasConcept C81388566 @default.
- W2152998434 hasConceptScore W2152998434C10138342 @default.
- W2152998434 hasConceptScore W2152998434C119857082 @default.
- W2152998434 hasConceptScore W2152998434C127413603 @default.
- W2152998434 hasConceptScore W2152998434C127598652 @default.
- W2152998434 hasConceptScore W2152998434C144024400 @default.
- W2152998434 hasConceptScore W2152998434C149782125 @default.
- W2152998434 hasConceptScore W2152998434C149923435 @default.
- W2152998434 hasConceptScore W2152998434C154945302 @default.
- W2152998434 hasConceptScore W2152998434C155032097 @default.
- W2152998434 hasConceptScore W2152998434C162324750 @default.