Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153122284> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2153122284 abstract "Heat transfer to the cylinder walls of internal combustion engines is recognized as one of the most important factors that in influences both engine design and operation.Research eff�orts concerning heat transfer in internal combustion engines often target the investigation of thermal loading at critical combustion chambercomponents. Simulation of internal combustion engine heat transfer using low dimensional thermodynamic modelling often relies on quasi-steady heat transfer correlations. However unsteady thermal boundary layer modelling could make a useful contribution because of the inherent unsteadiness of the internal combustion engine environment.In this study, a computational and experimental study is presented. The experiments are performed on a spark-ignition, single-cylinder engine under motoredand �red conditions. In the present study, decoupled simulations are performed, in which quasi-steady heat transfer models are used to obtain the gas propertiesin the core region. A scaled Eichelberg's model is used in the simulation of the motored test under wide open and fully closed throttle settings. In the �red casethe scaled Woschni's model was used. The scaling factor is used to achieve a good agreement between measured and simulated pressure histories.An unsteady heat transfer model based on the unsteady thermal boundary layer is presented in this study. Turbulent kinetic energy in the core of the cylinder ismodelled by considering the balance between production and dissipation terms as suggested by previous authors. An effective variable thermal conductivity is applied to the unsteady model with diff�erent turbulent Prandtl number models and turbulent viscosity models, and a �xed value is assumed for the thermal boundary layer thickness. The unsteady model is run using the gas properties identif�ed from the quasi-steady simulation.The results from the quasi-steady modelling showed that no agreement was achieved between the measured and the simulated heat flux using the scaled Eichelberg's model for the motored case and the scaled Woschni's model for the�red case. A signifi�cant improvement in the simulation of the heat flux measurements was achieved when the unsteady energy equation modelling of the thermal boundary layer was applied. The simulation results have only a small sensitivity to the boundary layer thickness. The simulated heat flux using the unsteady model with one particular turbulent Prandtl number model, agreed with measuredheat flux in the wide open throttle and fully closed throttle cases, with an error in peak values of about 6 % and 35 % for those cases respectively. In the�red case, a good agreement was also observed from the unsteady model and the error in the peaks between the measured and the simulated heat flux was found to be about 9 %.The turbulent Prandtl number and turbulent viscosity models are derived from quasi-steady flow experiments and hence their general applicability to the unsteady internal combustion engine environment remains uncertain. The thermalboundary layer thicknesses are signifi�cant relative to the internal combustion engine clearance height and therefore, the assumption of an adiabatic core is questionable.Investigation of a variable thermal boundary layer thickness and more closely coupled simulation to account for heat loss from the entire volume of the gas should be targeted in the future." @default.
- W2153122284 created "2016-06-24" @default.
- W2153122284 creator A5078409634 @default.
- W2153122284 date "2012-05-01" @default.
- W2153122284 modified "2023-09-26" @default.
- W2153122284 title "Internal combustion engine heat transfer-transient thermal analysis" @default.
- W2153122284 hasPublicationYear "2012" @default.
- W2153122284 type Work @default.
- W2153122284 sameAs 2153122284 @default.
- W2153122284 citedByCount "0" @default.
- W2153122284 crossrefType "dissertation" @default.
- W2153122284 hasAuthorship W2153122284A5078409634 @default.
- W2153122284 hasConcept C102305021 @default.
- W2153122284 hasConcept C105923489 @default.
- W2153122284 hasConcept C106169591 @default.
- W2153122284 hasConcept C111603439 @default.
- W2153122284 hasConcept C121332964 @default.
- W2153122284 hasConcept C127413603 @default.
- W2153122284 hasConcept C132646400 @default.
- W2153122284 hasConcept C167131557 @default.
- W2153122284 hasConcept C178790620 @default.
- W2153122284 hasConcept C185592680 @default.
- W2153122284 hasConcept C196558001 @default.
- W2153122284 hasConcept C29700514 @default.
- W2153122284 hasConcept C50517652 @default.
- W2153122284 hasConcept C511840579 @default.
- W2153122284 hasConcept C57879066 @default.
- W2153122284 hasConcept C78519656 @default.
- W2153122284 hasConcept C97355855 @default.
- W2153122284 hasConceptScore W2153122284C102305021 @default.
- W2153122284 hasConceptScore W2153122284C105923489 @default.
- W2153122284 hasConceptScore W2153122284C106169591 @default.
- W2153122284 hasConceptScore W2153122284C111603439 @default.
- W2153122284 hasConceptScore W2153122284C121332964 @default.
- W2153122284 hasConceptScore W2153122284C127413603 @default.
- W2153122284 hasConceptScore W2153122284C132646400 @default.
- W2153122284 hasConceptScore W2153122284C167131557 @default.
- W2153122284 hasConceptScore W2153122284C178790620 @default.
- W2153122284 hasConceptScore W2153122284C185592680 @default.
- W2153122284 hasConceptScore W2153122284C196558001 @default.
- W2153122284 hasConceptScore W2153122284C29700514 @default.
- W2153122284 hasConceptScore W2153122284C50517652 @default.
- W2153122284 hasConceptScore W2153122284C511840579 @default.
- W2153122284 hasConceptScore W2153122284C57879066 @default.
- W2153122284 hasConceptScore W2153122284C78519656 @default.
- W2153122284 hasConceptScore W2153122284C97355855 @default.
- W2153122284 hasLocation W21531222841 @default.
- W2153122284 hasOpenAccess W2153122284 @default.
- W2153122284 hasPrimaryLocation W21531222841 @default.
- W2153122284 hasRelatedWork W17118119 @default.
- W2153122284 hasRelatedWork W1822539992 @default.
- W2153122284 hasRelatedWork W1980669188 @default.
- W2153122284 hasRelatedWork W1981300147 @default.
- W2153122284 hasRelatedWork W1996084112 @default.
- W2153122284 hasRelatedWork W2007215950 @default.
- W2153122284 hasRelatedWork W2017676466 @default.
- W2153122284 hasRelatedWork W2018305017 @default.
- W2153122284 hasRelatedWork W2031776298 @default.
- W2153122284 hasRelatedWork W2068713039 @default.
- W2153122284 hasRelatedWork W2131483780 @default.
- W2153122284 hasRelatedWork W2167960131 @default.
- W2153122284 hasRelatedWork W2172904427 @default.
- W2153122284 hasRelatedWork W2182550929 @default.
- W2153122284 hasRelatedWork W2249357981 @default.
- W2153122284 hasRelatedWork W2387189110 @default.
- W2153122284 hasRelatedWork W2894698263 @default.
- W2153122284 hasRelatedWork W2921821311 @default.
- W2153122284 hasRelatedWork W2961719438 @default.
- W2153122284 hasRelatedWork W3112146219 @default.
- W2153122284 isParatext "false" @default.
- W2153122284 isRetracted "false" @default.
- W2153122284 magId "2153122284" @default.
- W2153122284 workType "dissertation" @default.